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Resolution vs Memory
• Need high resolution in the “interesting” region

• But also need large domain to reach the gravitational wave zone 
(and even larger still to isolate spurious boundary effects)

• Generally cannot afford to pay the price of high resolution 
throughout the entire domain

• Separation in physical lengthscales should be reflected in the 
computational setup

• Different resolutions for different scales interest!



Moving-box mesh refinement
• User specify the size and initial position of a hierarchy of nested 

boxes with progressively higher resolutions

• Boxes may move around, either by manually specifying a 
trajectory or tracking some features, but cannot be generally 
created or change in size or shape

• Very successful in e.g. binary black
hole simulations

• Can be more efficient computationally
compared to fully-flexible AMR

[Image credit: J. Seiler]



Higher dimensions
• GR is richer when number of dimensions is > 4 and/or boundary 

conditions other than asymptotic flatness

• In D ≥ 5, black holes need not have spherical topology: black rings 
[Emparan and Reall]

• In D ≥ 6, fast-rotating black holes no longer becomes extremal: 
ultraspinning regime exhibits new instabilities [Myers, Emparan, Shibata, 
Yoshino]

• Naked singularity formation in asymptotically-KK spacetimes
[Gregory and LaFlamme, Lehner and Pretorius]



Adaptive mesh refinement
• More complicated GR setups can have dynamically emerging 

lengthscales at hard-to-predict times and locations

• Manually pausing and inserting boxes to resolve all of these new 
features is infeasible

• Nested-box structure inadequate for more complicated topologies, 
e.g. a torus or a shell
• Technically, one can still implement FMR with nontrivial topology, but any 

simplification in programming is quickly offset by the complexity in the manual 
setup!



PAMR/AMRD [Pretorius]

Endpoint of the Gregory-LaFlamme instability [Lehner and Pretorius]



GRChombo
Dynamical evolution of black ring instability in D=5
[Figueras, Kunesch, ST (in progress)]



GRChombo
Bar-mode instability of ultraspinning 6D Myers-Perry black hole
[Shibata and Yoshino, Figueras, Kunesch, ST (in progress)]



Chombo
General purpose AMR library from Lawrence Berkeley (LBL)

• Provides building blocks for implementing AMR for structured-
grid PDE problems

• Written in (partially templated) C++ and utilises MPI for 
parallelism

• Produces HDF5 output with built-in data on the mesh structure, 
which is understood by Paraview and VisIt

• Very easy to build!
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Chombo
• Provided classes can be categorised into roughly three layers

• Layer 1: distributed data structures (set ops, distribution, 
synchronisation, load balancing)

• Layer 2: interpolation, ghost cell filling, flux matching

• Layer 3: Berger-Oliger time subcycling, elliptic solver

• Physics implemented by subclassing “AMRLevel” and overloading 
functions to calculate RHS, tag cells for refinement, exchange data 
between levels, etc.
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AMRLevel



Berger-Oliger AMR
Box-structured local refinement [Berger and Oliger, 1984]

• Estimate local error at each cell on the mesh

• Cells whose error exceeds some threshold are tagged

• Arrange tagged cells into a collection of boxes

• Populate the boxes with a new mesh at a higher resolution

• Do the same thing on the new mesh until no more cells are tagged, 
or maximum number of levels is reached



Subcycling in time
In order to maintain the CFL condition, we must also “refine in time” 
each time we refine in space. (Applicable to both FMR and AMR)
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Grid generation
Optimum clustering of points into boxes [Berger and Rigoutsos, 1991]
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Load balancing
• Morton-order the boxes

• Apply the knapsack algorithm



Coarse averaging
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Fine interpolation
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Ghost cell filling
• Chombo provides “patcher” classes to fill ghost cells between each 

subcycle in time

• Runge-Kutta already uses time interpolation internally in each 
step to achieve higher-order convergence in time

• Chombo provides an RK4 stepper which stores these intermediate 
values, then use them to provide the correct ghost value at the 
subcycled times for the next level

• Also simultaneously performs fine-interpolation in space



A typical timestep
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GRChombo
• Implements BSSN/CCZ4 equations on top of Chombo
• + “modified cartoon” terms D>4 simulations
• + scalar field 

• Fourth-order finite differences in space (centered stencils for most 
terms, upwinded stencils for shift-advected terms)

• Explicit fixed-step RK4 in time

• No proper initial data solver yet, but
Chombo does come with “AMRElliptic”
capabilities
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Convergence test



Strong scaling



Strong scaling
SuperMike-II (Sandy Bridge / Infiniband QDR)
COSMOS VIII (Nehalem / SGI NUMAlink 5)
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Weak scaling
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Analysis tools
• We have developed some essential analysis tools for numerical GR 

problems

• Most analysis tasks involve interpolating data onto a secondary 
grid; AMR is not usually necessary on this secondary grid

• AMRInterpolator uses PETSc to set up a distributed uniform grid 
and has custom MPI code to perform all-to-all query of 
interpolated data using Lagrange polynomials (arbitrary order)

• Take data from the finest available
level for at any given point
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Analysis tools
• AMRInterpolator is modular: specific analysis tasks can be easily 

built on top of it

• Calculation of ψ4 on a sphere of any given radius

• Apparent horizon finder via Newton’s method; supports both 
spherical or toroidal horizon topologies

• New AH coordinates can be
implemented very easily (code is 
templated on the transformation
functions)

MPI	
  and	
  HDF5

ChomboPETSc

AMRInterpolator

ApparentHorizon Weyl4



Upcoming development
• Code refactoring: now that we know it can work well, let’s make it 

more maintainable and extensible also

• Profiling and optimisation: can we benefit from e.g. Intel Xeon Phi? 
More and more clusters are relying on these accelerators to 
provide the bulk of their FLOPS

• Dynamical excision? In principle can piggyback on the AMR 
tagging workflow, but interlevel and ghost filling is problematic

• Public code release planned





Physics work in progress



Physics work in progress




