
Chemora!*

Computational Hierarchy for
Engineering Model-Oriented

Re-adjustable Applications [tm]

Chemora Kernel Mapping Optimization

Steven R. Brandt1 David M. Koppelman2 Yue Hu2

Louisiana State University
Baton Rouge, LA U.S.A.

1 Division of Computer Science
2 Division of Electrical & Computer Engineering

Center for Computation and Technology

*This work supported in part under US NSF grant ACI-1265449.

et15­1 Formatted 13:01, 27 August 2015 from chemora. et15­1

Chemora! Goals

Someday in the near future

Write a differential equation description of some system . . .

. . . enter a simple command . . .

. . . the Chemora system will generate highly tuned code. . .

. . . tailored to your system and simulation parameters.

et15­2 Formatted 13:01, 27 August 2015 from chemora. et15­2

Overview

From EDL to GPU Code

EDL or

Kranc

Script
Kranc

et15­3 Formatted 13:01, 27 August 2015 from chemora. et15­3

From EDL to GPU Code

User writes EDL or Kranc script.

User writes parameter file describing simulation.

User runs Kranc to generate a Cactus thorn.

User builds Cactus to generate a Cactus executable.

User runs Cactus executable.

EDL or

Kranc

Script
Kranc

et15­4 Formatted 13:01, 27 August 2015 from chemora. et15­4

Cactus Executable Contents

Executable has simulation code in four forms:

CPU code.

CaKernel static code (CaKs), for GPU.

CaKernel dynamic code (CaKd), for GPU.

Chemora intermediate code (Chm), for GPU.

EDL or

Kranc

Script
Kranc

et15­5 Formatted 13:01, 27 August 2015 from chemora. et15­5

CaKernel Static Code

CaKs

GPU run of Kranc-generated code using Kranc-chosen tile.

Optimal tile size requires optimally patient user.

et15­6 Formatted 13:01, 27 August 2015 from chemora. et15­6

CaKernel Dynamic Code

CaKd

Tile sizes chosen dynamically, based on system and application parameters.

Code dynamically compiled using tile size and app parameters.

et15­7 Formatted 13:01, 27 August 2015 from chemora. et15­7

Chemora!

Chm

Calculation dynamically mapped to kernels based on app and sys params.

Emit code in PTX to avoid compiler front end sillyness.

et15­8 Formatted 13:01, 27 August 2015 from chemora. et15­8

Chemora’s Optimization of a Calculation

Elements of a Calculation

→ Operates on a grid point, say (i, j, k).

→ Reads grid functions at small offsets from grid point, say (i− 1, j, k).

→ Performs arithmetic operations.

→ Writes grid functions at grid point.

Mathematically: xi,j,k = 7ai,j,k + 3ai−1,j,k + bi,j+1,k

As C Code:

I3D[x,0,0,0] = 7 * I3D[a,0,0,0] + 3 * I3D[a,-1,0,0] + I3D[b,0,1,0];

et15­9 Formatted 13:01, 27 August 2015 from chemora. et15­9

Execution of a calculation.

Calculation must operate over a grid of points, for example:

for (int i=0; i<imax; i++)

for (int j=0; j<jmax; j++)

for (int k=0; k<kmax; k++)

I3D[x,0,0,0] = 7 * I3D[a,0,0,0] + 3 * I3D[a,-1,0,0] + I3D[b,0,1,0];

et15­10 Formatted 13:01, 27 August 2015 from chemora. et15­10

In a perfect world:

#pragma smartmp parallelize target auto

for (int i=0; i<imax; i++)

for (int j=0; j<jmax; j++)

for (int k=0; k<kmax; k++)

I3D[x,0,0,0] = 7 * I3D[a,0,0,0] + 3 * I3D[a,-1,0,0] + I3D[b,0,1,0];

et15­11 Formatted 13:01, 27 August 2015 from chemora. et15­11

Fundamental Performance Limits

Saturation Analysis

Hardware Limiters

FP Rate: θfp = 1 TFLOPS.

Data Rate: θdata = 1 GB/s.

Problem Requirements

FP: pfp = 10 FP operations per active grid point.

Data (r+w): 4 grid functions, 32 B per grid point.

Grid Size: n2 points, stencil size 1 × 1.

et15­12 Formatted 13:01, 27 August 2015 from chemora. et15­12

Execution Time Limit

Based on FP: (n − 2)210/θfp.

Based on Data: n2/θdata.

⇒Nothing is wasted.

et15­13 Formatted 13:01, 27 August 2015 from chemora. et15­13

Working Set v. Parallelism

Locality Domain:

The collection of high-speed storage available to a set of threads.

For this talk, locality domain imposed by the CUDA Multiprocessor.

Working Set:

The set of data that will soon be reused by some piece of code.

Accommodating locality domains imposes re-use and communication over-
heads.

Spatial accommodation: utilizing all available MPs.

Temporal accommodation: using the same MP multiple times.

et15­14 Formatted 13:01, 27 August 2015 from chemora. et15­14

NVIDIA GPU Organization Highlights

NVIDIA CUDA GPU code executes in units called kernels which consists
of threads organized into a blocks.

All threads in a kernel start execution at the same place.

Kernel 0

Resources

first_proc() {

 tid = threadIdx.x...

et15­15 Formatted 13:01, 27 August 2015 from chemora. et15­15

NVIDIA GPU Organization Highlights

Blocks are assigned to multiprocessors (MPs) for execution.

Threads in a block share an MP’s resources.

Resources include registers and shared memory . . .

. . . both of which serve the same purpose as the L1 cache in a CPU.

Kernel 0

Resources

first_proc() {

 tid = threadIdx.x...

et15­16 Formatted 13:01, 27 August 2015 from chemora. et15­16

NVIDIA GPU Organization Highlights

There are no latency reduction and hiding mechanisms . . .

. . . other than a huge number of threads.

Kernel 0

Resources

first_proc() {

 tid = threadIdx.x...

et15­17 Formatted 13:01, 27 August 2015 from chemora. et15­17

Tradeoffs In Kernel Size (Two Senses)

Increasing the number of threads in a block.

:-) Reduces stencil buffering overhead.

:-) Hides more latency.

But, increasing the number of instructions in a thread.

:-(Reduces the maximum number of threads.

:-O Can lead to register spill/spills . . .

. . . which are very costly on a GPU.

et15­18 Formatted 13:01, 27 August 2015 from chemora. et15­18

Degrees of Freedom for Generating Code

Assignment of iterations to threads and thread block shape.

Buffering of re-used values.

Mapping of calculation to multiple kernels.

Reassociation to reduce communication and storage size.

Etc.

et15­19 Formatted 13:01, 27 August 2015 from chemora. et15­19

How Chemora Helps

Quickly explore a large space of configurations.

Speed is due to our model-driven autotuning technique.

et15­20 Formatted 13:01, 27 August 2015 from chemora. et15­20

The Chemora! Approach

Model-Driven Autotuning

• Develop an accurate execution time model.

• Generate code alternatives and execution configurations.

• Use model to choose between alternatives. (Tile shape, loop fission.)

• Generate code after finishing model-driven search.

et15­21 Formatted 13:01, 27 August 2015 from chemora. et15­21

Those Other Guys

Execution-Driven Autotuning:

An autotuning method in which configuration alternatives are chosen using
a sample run.

• Generate execution configurations.

• Run (static) or compile and run (dynamic) . . .

. . . code and measure execution time.

• Choose configuration based on measured execution time.

Kamil 10 IPDS

Zhang 12 CGO

Williams 11 SC

et15­22 Formatted 13:01, 27 August 2015 from chemora. et15­22

Some Terminology

Calculation:

A DAG whose sources load grid function values at some offset from the
assigned grid point, whose interior nodes perform arithmetic operations
and whose sinks store grid function values at the assigned grid point.

Example:

3

7

ld

st

ld

Load gf values relative to (i,j,k).

a:-1,+0,+0

a:+0,+0,+0

Store value at (i,j,k).

Assigned grid point is (i,j,k).

x

+ *
*

*

+

et15­23 Formatted 13:01, 27 August 2015 from chemora. et15­23

Mapping:

An assignment of nodes in a calculation to kernels,
the choosing of CUDA block dimensions,
the assignment of grid space to threads,
and other details needed to delineate generated code.

Example:

3

7

ld

st

ld

a:-1,+0,+0

a:-0,+0,+0

x

+ *
*

+

ernel 0

Kernel 1

st
y

* +

Both kernels.

Via register.
Via global memory.

Kernel 0: Block 256 threads. Tile: 64 × 4 × 1 threads.

Kernel 1: Block 1024 threads. Tile: 128 × 8 × 1 threads.

et15­24 Formatted 13:01, 27 August 2015 from chemora. et15­24

Code Generation:

The process of generating source code given some mapping of a calculation.

et15­25 Formatted 13:01, 27 August 2015 from chemora. et15­25

The Chemora Approach

et15­26 Formatted 13:01, 27 August 2015 from chemora. et15­26

Advantages of Chemora’s Model-Driven Autotuning

Much faster than execution-driven autotuning.

Refinement of the model helps refine search.

et15­27 Formatted 13:01, 27 August 2015 from chemora. et15­27

Mapping Generation

Goal: Fast search.

Steps:

• Node assignment.

• Optimization.

• Tile configuration.

• Execution time estimation.

et15­28 Formatted 13:01, 27 August 2015 from chemora. et15­28

Node Assignment

Objective: Assign each node to one or more kernels.

Starting point can be a calculation or an existing mapping.

Calc → Mapping

Single kernel (all nodes to one kernel).

Multiple kernels, one GF store per kernel.

Random assignment to k kernels.

Mapping → Mapping

A proposed move specifies nodes to move or copy.

et15­29 Formatted 13:01, 27 August 2015 from chemora. et15­29

Move Proposal Optimization

Add to proposal for correctness.

Dead code elimination.

et15­30 Formatted 13:01, 27 August 2015 from chemora. et15­30

Tile Configuration

Determine:

Method used to access grid function values.

Number of threads, thread assignment and iteration.

Currently uses a deterministic procedure

Procedure

Based on stencil determine tile shape and iteration direction.

Determine thread limit imposed by register use.

Determine tile size imposed by shared memory use.

Performed in a deterministic fashion—for now.

et15­31 Formatted 13:01, 27 August 2015 from chemora. et15­31

Execution Time Estimation

Based on move proposal, not on a complete re-tallying.

Importance of Execution Time Estimation

et15­32 Formatted 13:01, 27 August 2015 from chemora. et15­32

Performance Model

Purpose: Estimate execution time of a kernel.

Applied to all kernels to get an overall execution time.

Based on hardware model, not on curve fitting.

An indispensable part of the optimization process.

et15­33 Formatted 13:01, 27 August 2015 from chemora. et15­33

Performance Model

Three Kernel Components Plus Launch Overhead

si: Instruction Issue Time

sd: Off-Chip Data Volume

sL: Iteration Latency

sk: Kernel Launch Overhead

et15­34 Formatted 13:01, 27 August 2015 from chemora. et15­34

Performance Model—Instruction Issue

Scaled instruction issue time denoted si.

This is the easy one.

Based on estimated tally of instructions.

Easy because of PTX compiler’s predictability.

si =
∑

c∈C
nc

θc

.

where C is a set of instruction classes . . .

. . . nc is the number of instruction in a calculation of class c . . .

. . . and θc is the target device MP throughput for c.

et15­35 Formatted 13:01, 27 August 2015 from chemora. et15­35

Example

Calculation has 21 MADD instructions.

MP has throughput of 64 MADD insn per cycle.

si = 21
64

+ · · ·

et15­36 Formatted 13:01, 27 August 2015 from chemora. et15­36

Off-Chip Data Volume

Assume 0% L2 Cache Hit Ratio

Account for size of ghost zone.

Account for buffering.

Easy because we aren’t using the RO cache yet.

Iteration Latency

Quick and dirty estimate (so far).

Based on mix of instructions, not dependence chains.

Scaled based on the number of threads in a block.

On the flight back: Use dataflow graph to get latency.

et15­37 Formatted 13:01, 27 August 2015 from chemora. et15­37

Execution Time Estimate

Scaling of Estimate

Components scaled to cycles. . .

. . . per grid point. . .

. . . per multiprocessor. . .

. . . per time step.

Let sd denote the scaled time for off-chip data.

Total time for off-chip data is E N
M

sd . . .

. . . where E is the number of time steps. . .

. . . N is the number of grid points. . .

. . . and M is the number of multiprocessors.

et15­38 Formatted 13:01, 27 August 2015 from chemora. et15­38

Scaling of Latency

Let L denote latency for computing one grid point.

Scaled latency is L/τ , where τ is the number of threads in a block.

et15­39 Formatted 13:01, 27 August 2015 from chemora. et15­39

Estimated Execution Time

Let sk denote the scaled kernel launch overhead.

Ideal Formula:

T = sk + max{sd, sL, si}

This assumes one component does not affect the other.

Current Formula:

T = sk + max{sd, sL, si} + 0.35(sd + sL + si − max{sd, sL, si})

et15­40 Formatted 13:01, 27 August 2015 from chemora. et15­40

Code Generation

Original Target: CUDA C

Used by CaKernel (static and dynamic).

Used in earlier version of Chemora.

But difficult to coax compiler to generate tight code.

Compiler would emit bloated code sequences for computing addresses
and iteration.

Current Chemora Target: PTX (CUDA Intermediate Form)

Assembler-like.

Need to compute byte addresses for data accesses.

But, fewer “surprise” code sequences.

et15­41 Formatted 13:01, 27 August 2015 from chemora. et15­41

Performance Evaluation Methodology

Hardware

NVIDIA Tesla K20c (Kepler generation, CC 3.5).

0.71 GHz, 5119 MiB global memory, 1280 kiB L2 cache.

Memory/L2 208.0 GB/s.

Build and OS Software

CUDA 7.0, V7.0.27

Data Collection

Kernel timing data collected using cuEventRecord.

Timing collected for kernel launch only . . .

. . . CPU ↔ GPU data transfer omitted.

et15­42 Formatted 13:01, 27 August 2015 from chemora. et15­42

ML BSSN Versions

Fixed:

Calculations have their natural size.

By Hand:

Calculations split by hand to improve performance.

BSSN Simulation Parameters

Ten iterations.

1003 grid.

et15­43 Formatted 13:01, 27 August 2015 from chemora. et15­43

More BSSN Details.

ADMBase::dtshift_evolution_method = "ML_BSSN"

ML_BSSN::harmonicN = 1 # 1+log
ML_BSSN::harmonicF = 2.0 # 1+log
ML_BSSN::ShiftGammaCoeff = 0.75
ML_BSSN::BetaDriver = 1.0
ML_BSSN::LapseAdvectionCoeff = 1.0
ML_BSSN::ShiftAdvectionCoeff = 1.0

ML_BSSN::MinimumLapse = 1.0e-8
ML_BSSN::conformalMethod = 1 # 1 for W, 0 for phi
ML_BSSN::my_initial_boundary_condition = "extrapolate-gammas"
ML_BSSN::my_rhs_boundary_condition = "static" # Radiative does not work with CaKernel yet
ML_BSSN::apply_dissipation = "never"

This thorn has been built only with 8th order finite differencing

Boundary::radpower = 2
ADMBase::metric_type = "physical"

CoordBase::domainsize = minmax

CoordBase::boundary_size_x_lower = 5
CoordBase::boundary_size_y_lower = 5
CoordBase::boundary_size_z_lower = 5
CoordBase::boundary_shiftout_x_lower = 1
CoordBase::boundary_shiftout_y_lower = 1
CoordBase::boundary_shiftout_z_lower = 1

CoordBase::boundary_size_x_upper = 5
CoordBase::boundary_size_y_upper = 5
CoordBase::boundary_size_z_upper = 5
CoordBase::boundary_shiftout_x_upper = 0
CoordBase::boundary_shiftout_y_upper = 0
CoordBase::boundary_shiftout_z_upper = 0

CartGrid3D::type = "coordbase"
CartGrid3D::domain = "full"
CartGrid3D::avoid_origin = "no"

CoordBase::xmin = 0
CoordBase::ymin = 0
CoordBase::zmin = 0

CoordBase::xmax = 100
CoordBase::ymax = 100
CoordBase::zmax = 100

CoordBase::dx = 1
CoordBase::dy = 1
CoordBase::dz = 1

et15­44 Formatted 13:01, 27 August 2015 from chemora. et15­44

Results

Benefit of: Hand Tuning, Cakernel Dynamic, Chemora

0

1000

2000

3000

4000

5000

6000

7000

8000

T

er er ic a

ernels

et15­45 Formatted 13:01, 27 August 2015 from chemora. et15­45

Accuracy of Prediction Model

0

0.5

1

1.5

2

2.5

M
e

a
s
u

re
d

 E
T

 /
 P

re
d

ic
te

d
 E

T

NonD

Within each calculation sorted by accuracy.

Outliers often due to unanticipated spill/fill code.

et15­46 Formatted 13:01, 27 August 2015 from chemora. et15­46

Number of Kernels v. Performance

Advect
InitRHS

RHS_Dalpha2_1_etc
RHS_Dalpha3_2_etc

RHS_Dalpha_1_etc
RHS_Dalpha_2_etc

RHS_Dalpha_3_etc
RHS_NonDerivatives

convertToADMBase

enforce Total/10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

One Kernel One Kernel per Grid Function Store Optimized Kernel Mapping

E
x
e
c
u
ti
o
n

 T
im

e
 /
 s

17.8 1.6 19.6

et15­47 Formatted 13:01, 27 August 2015 from chemora. et15­47

Number of Kernels per Calculation

Advect
InitRHS

RHS_Dalpha2_1_etc
RHS_Dalpha3_2_etc

RHS_Dalpha_1_etc
RHS_Dalpha_2_etc

RHS_Dalpha_3_etc
RHS_NonDerivatives

convertToADMBase
enforce

0

5

10

15

20

25

30

Number of generated CUDA kernels per computation

Hand One kernel per grid function store Multiple kernels

et15­48 Formatted 13:01, 27 August 2015 from chemora. et15­48

Comparison

Advect
InitRHS

RHS_Dalpha2_1_etc
RHS_Dalpha3_2_etc

RHS_Dalpha_1_etc
RHS_Dalpha_2_etc

RHS_Dalpha_3_etc
RHS_NonDerivatives

convertToADMBase

enforce Total/10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

One Kernel One Kernel per Grid Function Store Optimized Kernel Mapping

E
x
e
c
u
ti
o
n

 T
im

e
 /
 s

17.8 1.6 19.6

Advect
InitRHS

RHS_Dalpha2_1_etc
RHS_Dalpha3_2_etc

RHS_Dalpha_1_etc
RHS_Dalpha_2_etc

RHS_Dalpha_3_etc
RHS_NonDerivatives

convertToADMBase
enforce

0

5

10

15

20

25

30

Number of generated CUDA kernels per computation

Hand One kernel per grid function store Multiple kernels

et15­49 Formatted 13:01, 27 August 2015 from chemora. et15­49

Execution Time Components

0

1

2

3

4

5

6

7

Insn Issue

Of Data

E
s
ti
m

a
te

d
 T

e
d

alpha2_1

alpha3_2

alpha_1

alpha_2

alpha_3

et15­50 Formatted 13:01, 27 August 2015 from chemora. et15­50

To Do

Performance Model

Base latency on dependence graph — which we have.

Replace Q&D estimates with true numbers.

Optimization

Rely more on non-stochastic methods.

Code Generation

Reassociate reduction operations to reduce IK storage. (Works on branch).

More optimization of iteration and address computation arithmetic.

et15­51 Formatted 13:01, 27 August 2015 from chemora. et15­51

Model Scope

Operate on a supercalculation (one that includes dependent differencing
operations).

Include CPU/GPU computation.

et15­52 Formatted 13:01, 27 August 2015 from chemora. et15­52

Thank You

Questions?

et15­53 Formatted 13:01, 27 August 2015 from chemora. et15­53

