Topics of interest

What is the dominant performance bottleneck for you?
e Zach: memory access / cache misses -> see per node optimization, talk to local cluster
support team
Shawn: 10 (avoid any 1d and 2d output)
Roland: load imbalance
e Vassili: MPI communication costs even for unigrid runs
o Check if this is MPI due to ghosts or due to Slab being called on only a few ranks
o Similar issue exists in the PreSync branch since BC application and GZ
synchronization happen one after the other

What are willing to do about it?
e Eric West willing to test optimizations, also to look into Carpet::commstate OpenMP
tasks
Deborah Ferguson willing to test optimizations
TODO: Roland / lan to add Eric and Deborah to lan’s benchmarking repo, add initial
Readme file on how to benchmark.
e TODO: see if accounts on important clusters can be provided for this

Requirements:

e Have a nsns benchmarking file: Shawn Rosofsky
e Have a BBH benchmarking file:
https://bitbucket.org/einsteintoolkit/performanceoptimisationwg/

How to benchmark: Timers

Reduce IO that would dominate in short runs
Often enough to run for 2 coarse timesteps
Files to look at:
o Carpet::timing has a column physical_time_per_hour
o TimerReport gives some human readable overview. Does not count IO however.
m Has options all_timers and all_timers_xml that produce machine readable
output -> lan’s SimulationTools can read and present a nice graph
o Carpet-timing-statistics contains all timers that Carpet knows about incl. 10 and
SYNC and prolongation. Ask for one file per rank!
o Use CarpetLib::barrier = yes option which lock-steps SYNC calls
Generic timer: clock_gettime(CLOCK_REALTIME, [output pointer])


https://bitbucket.org/einsteintoolkit/performanceoptimisationwg/src/0335e6e717122f7fc40cdbac337cb73c79e0f750/bbhbench?at=master

How to benchmark: Tracking memory accesses / cache misses

e Valgrind’s (http://valgrind.org/) cachegrind/callgrind
o Requires that code be compiled with “-g” (debugging enabled)
o Sometimes valgrind results can be difficult to interpret if compiler does lots of
function inlining, or if many external library calls
m Useful to create static executable, then *all* function calls are reported
e Linux perf tool lets you do similar things
e Use PAPI itself
o Talk to your local cluster’s support team
e Use “roofline analysis”
o Nice presentation from NCSA (scroll to JaeHyuk Kwack, NCSA'’s presentation):
https://bluewaters.ncsa.illinois.edu/symposium-2018-tutorials
o Data on CPU cost per SIMD instruction:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

How to optimize per node performance

e Peak at the HydroToyOpenMP code (https://github.com/eschnett/HydroToyOpenMP)

o Vectorize your code either explicitly using thorn Vectors or library vecmathlib (on
bitbucket) [also SLEEF http://sleef.org] or if simple enough then auto-vectorize
asking for a *vectorization* report

o Compilers only vectorize the innermost loop
Tile based parallelization allows you to use multiple passes over data. Tiles are
typically small 16x16x16 points or so which is already 32kb of memory per
double variable.

o Second derivatives: Compute & store first derivatives, then perform first
derivative on those data.



http://valgrind.org/
https://bluewaters.ncsa.illinois.edu/symposium-2018-tutorials
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/eschnett/HydroToyOpenMP
http://sleef.org/







