
Topics of interest

What is the dominant performance bottleneck for you?

● Zach: memory access / cache misses -> see per node optimization, talk to local cluster
support team

● Shawn: IO (avoid any 1d and 2d output)
● Roland: load imbalance
● Vassili: MPI communication costs even for unigrid runs

○ Check if this is MPI due to ghosts or due to Slab being called on only a few ranks
○ Similar issue exists in the PreSync branch since BC application and GZ

synchronization happen one after the other

What are willing to do about it?

● Eric West willing to test optimizations, also to look into Carpet::commstate OpenMP
tasks

● Deborah Ferguson willing to test optimizations
● TODO: Roland / Ian to add Eric and Deborah to Ian’s benchmarking repo, add initial

Readme file on how to benchmark.
● TODO: see if accounts on important clusters can be provided for this

Requirements:
● Have a nsns benchmarking file: Shawn Rosofsky
● Have a BBH benchmarking file:

https://bitbucket.org/einsteintoolkit/performanceoptimisationwg/

How to benchmark: Timers
● Reduce IO that would dominate in short runs
● Often enough to run for 2 coarse timesteps
● Files to look at:

○ Carpet::timing has a column physical_time_per_hour
○ TimerReport gives some human readable overview. Does not count IO however.

■ Has options all_timers and all_timers_xml that produce machine readable
output -> Ian’s SimulationTools can read and present a nice graph

○ Carpet-timing-statistics contains all timers that Carpet knows about incl. IO and
SYNC and prolongation. Ask for one file per rank!

○ Use CarpetLib::barrier = yes option which lock-steps SYNC calls
● Generic timer: clock_gettime(CLOCK_REALTIME, [output pointer])

https://bitbucket.org/einsteintoolkit/performanceoptimisationwg/src/0335e6e717122f7fc40cdbac337cb73c79e0f750/bbhbench?at=master

How to benchmark: Tracking memory accesses / cache misses
● Valgrind’s (http://valgrind.org/) cachegrind/callgrind

○ Requires that code be compiled with “-g” (debugging enabled)
○ Sometimes valgrind results can be difficult to interpret if compiler does lots of

function inlining, or if many external library calls
■ Useful to create static executable, then *all* function calls are reported

● Linux perf tool lets you do similar things
● Use PAPI itself

○ Talk to your local cluster’s support team
● Use “roofline analysis”

○ Nice presentation from NCSA (scroll to JaeHyuk Kwack, NCSA’s presentation):
https://bluewaters.ncsa.illinois.edu/symposium-2018-tutorials

○ Data on CPU cost per SIMD instruction:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

How to optimize per node performance
● Peak at the HydroToyOpenMP code (https://github.com/eschnett/HydroToyOpenMP)

○ Vectorize your code either explicitly using thorn Vectors or library vecmathlib (on
bitbucket) [also SLEEF http://sleef.org] or if simple enough then auto-vectorize
asking for a *vectorization* report

○ Compilers only vectorize the innermost loop
○ Tile based parallelization allows you to use multiple passes over data. Tiles are

typically small 16x16x16 points or so which is already 32kb of memory per
double variable.

○ Second derivatives: Compute & store first derivatives, then perform first
derivative on those data.

http://valgrind.org/
https://bluewaters.ncsa.illinois.edu/symposium-2018-tutorials
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/eschnett/HydroToyOpenMP
http://sleef.org/

