Chemora! Hands On Exercises

Steven R. Brandt ${ }^{1}$
Louisiana State University
${ }^{1}$ Division of Computer Science
${ }^{2}$ Division of Electrical \& Computer Engineering
Center for Computation and Technology

EDL: Equation Definition Language

- Easy to parse
- Easy to read
- Uses English begin/end for blocks
- Specifies parts of the thorn, where to run

EDL: Equation Definition Language

- Equations typed in "natural" form
$\diamond *$ or space means multiply (but not newline)
\diamond parenthesis are used to group or call a function
\diamond D x means partial x derivative
\diamond D_t means partial t derivative, use on the LHS
$\diamond{ }^{\wedge}$ is used for upper indices, - is for lower
$\diamond{ }^{* *}$ is used for exponents
\diamond implied summation is used
- "Natural" means different things to different people

A Basic EDL Script

```
begin thorn SimpleWaveScriptCaKernel
use cakernel
# This is a comment
begin parameters
    amp : real "The amplitude of the wave",
            default: 1.0, range: -infinity to infinity
    kfac : real "The wave number", default: 2 PI, range: 0 to 10 PI
    c0 : real
end parameters
begin calculation initial_sine_calc scheduled at initial
    phi = amp sin(kfac x) cos( kfac c0 t)
    pi = -amp c0 kfac sin(kfac x) sin( kfac c0 t)
end calculation
```


A Basic EDL Script

```
begin calculation calc_rhs scheduled at MoL_CalcRHS
    D_t phi = pi
    D_t pi = c0**2 D_xx phi
end calculation
begin calculation calc_bound_rhs scheduled at MoL_CalcRHS on boundary
    D_t phi = pi
    D_t pi \(=-c 0 * * 2 \mathrm{kfac} * * 2 \mathrm{phi}\)
end calculation
begin variables
    phi pi
end variables
end thorn
```


Setting Up

Login to Shelob (shelob.hpc.lsu.edu)
User Name: (hpctrn01 to hpctrn20)
Password (see board)
Your .soft should contain +mathematica-9.0
After adding it, type "resoft"
cd /work/\$LOGNAME/ChemoraET15

Modifying the Wave Equation

sh edl_wave.sh
Edit the file
make
qsub -I -l walltime $=0: 05: 00-1$ nodes=1:ppn=16 -q checkpt
cd /work/\$LOGNAME/ChemoraET15
mpirun -np 1 ./exe/cactus_sim simplewave.par
exit \# Neither "vi" nor "make" work properly on a compute node

Visualizing the Data

After running you should have files such as ./simplewave/phi.xl
You can visualize them with gnuplot
\$ scp hpctrn01@shelob.hpc.lsu.edu:/work/hpctrn01/ChemoraET15/simplewave/phi.xl .
gnuplot> plot "phi.xl" i 0 using 10:13 with linespoints
gnuplot> plot "phi.xl" i 1 using 10:13 with linespoints

Visualizing the Data

Alternatively, create a movie with wave_movie.pl
Use scp to fetch it from shelob on /home/sbrandt/bin/wave_move.pl
type "wave_movie.pl file" to create a movie using gnuplot and mencoder.

Suggested Edits

Replace "D_xx" with "Euc^ij D_ij"
Modify the RHS, "D_t phi $=\mathrm{pi}+\operatorname{vamp} \exp \left(-\operatorname{sigma}\left((\mathrm{x}-\mathrm{xv} 0){ }^{* *} 2\right)\right)$ "
...add parameters such as vamp as needed
Set "D_t pi = boundx" in the boundary condition
boundx $=-1,0$, or 1

Show Tuning Decisions

Try uncommmenting the show tuning flag:
CaKernel::dynamic_compile_show_tuning_decisions $=$ yes

```
Calculation initial_sine_calc finalized.
    Total 141, (vis,ctc,ident, eable,remap) (9,29,1, 6,0)
    Optimizations: (ident_op, zero_mult, neg_mult) (1,0,0)
    : (comb,distr,cfact) (0,0,0)
INFO (CaCUDALib): Chemora Code Generation Report for initial_sine_calc
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline : & Tile & Iter B & FP/Insn & IK & Elts & Issue & Data & Lat & ET & OV & H/I \\
\hline 0: 120, & 8, 1 & 10 z G & 2/ 3 & 0 & 3.0 & 0.1 & 1.0 & 0.5 & 7.1 & 0 & 1.00 \\
\hline Total of & 1 & \(0)\) & 2/ 3 & 0 & 3.0 & 0.1 & 1.0 & 0.5 & 7.1 & & \\
\hline
\end{tabular}
```

