1 MHD Con2Prim

1.1 Notation

The current MHD con2prim routines assume a polytropic equation of state, but
may be generalized to include arbitrary equations of state so long as we may
evaluate the pressure as a function of density and internal energy, as well as its
derivatives with respect to those quantities.

To establish notation, we follow that of Noble et al. (2006) [astro-ph/0512420],
which describes the Con2Prim routines implemented in the HARM code, specifi-
cally, the 1Dy and 2D schemes. We define the following quantities:

Rest mass density : pg
Internal energy : wu
Pressure : p

Enthalpy @ w=po+u+p
3 —velocity : v (Valencia definition) : v; = yu;
Lorentz factor : ~ = (1 —v?)71/2

We begin from eight given conserved quantities: D, S;, 7, B?, all of which have
been undensitized by dividing the typical GRHydro forms by +/|vi;| = ¥S.

We may define a few auxiliary quantities for use in our numerical calcula-
tions. Define the momentum density

Qu=aTl); Qi=S, (1)

and its normal projection Q given by

Qu = Q,u + (Qunu)nu (2)

both of which are known from the conservative variables and the metric, as well

as the quantity
W = wy? (3)

1.2 2-d Newton-Raphson for General EOS

The 2-d Newton-Raphson approach implemented currently solves the following
two equations for the unknown quantities W and v?2, with all other terms known
from the given conserved set:

0? = VX(B2+W)?— (Q-B)QB:;%W (4)
2 . B)?
Q-n = _%(1+02)+@W_2—W+p(P07“) (5)



where all dot products are understood as 4-d here. The problematic step is
found in the routine eos_info, where we actually calculate p from the conserved
variables and the current guess for W and v? by noting that

w

(1—0H)W = 7=w=P0+U+p
D

V-2 D = —=p
~

utp = (1—0v)W —+1-v2D (6)

and then note that for a polytrope that p = (F - 1u.

For a more general EOS, it is easier given the current structure of the EOS
interface in the EinsteinToolkit to solve for u, or, equivalently, ¢ = u/pg, and
then use it in the 2-D NR steps. First, noting that

w
p:w—po—u:—2—p0—u:(1—v2)W—D\/l—v2—u (7)
Y
we may rewrite Eq. 5 as

Q-n:—B;(Hv?)JFMW*‘Z—uQW—D\/1—v2—u (8)

2
To perform a NR step, we first set pg = D+v/1 — v? and solve
u + p(po,u) = W(1 —v?) — Dy/1 — 02 (9)

which should work smoothly since the left hand side will in general be a mono-
tonic function of u. Next, we use those values and calculate the derivatives. We
find for Ou/OW:

ou Op ou 9
W/+<m>aw = 1-v
ou 1—o?
— = — (10)
")
PO

and for du/d(v?):

s (om ). i)+ (50) oo = "+ i

)
ou _ zm {14— (c')po) } w (11)
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Finally, in the Newton-Raphson step, we find by taking derivatives of Eq. 8 that
the corresponding Jacobian entries in func_vsq are given by

. @-B? 5 Ou

J1,0) ws U T aw
B? D ou
JA,1) - -2 _wy -
(1,1) 2 oI (02




with no change required for the residuals so long as we record the corresponding
value of p(pg,u).
Note that for an EOS defined such that p = p(po, €), the derivatives above

are given by
<3P> _ (51?) _6(3?)
9po /. dpo). po \O¢/,
o\ _ L (%
du o ~ po \Oe o

1.2.1 An explicit version for general EOS

Note that if the loop-with-a-loop proves problematic, one may also use v? and
€ as fundamental variables to construct a fully explicit scheme, and find

po = Dv1—0v?
w o~ Poll+el+plpoe)
1— 02

plugging the latter into Eqgs. 4 and 5 and properly evaluating the Jacobian
matrix. Unfortunately, while a scheme using W and e might yield simpler
derivatives in the Jacobian, solving for v(W, €) seems like a particularly daunting
task.

1.3 The 1-d Newton Raphson solver for polytype EOS

For cases where the pressure and internal energy are functions of the rest
mass density only, called “polytype” throughout GRHydro, we need a differ-
ent Con2Prim inversion technique since the quantity @ -n in Egs. 5 / 8 requires
knowledge of 7, which is not evolved in these cases. Instead, the inversion uses
Eq. 4 only, as follows.

We may use Eq. 4 to eliminate the variable v? from the Newton-Raphson
scheme by solving it for v?(W):

_ W@ +(Q- B)*(B* +2W)

(W) w?(B2 +W)?2

(12)

To perform the iteration, we may proceed by first solving for po(W') through
an independent Newton-Raphson loop over the equation

D2
W = wy’= v 5
Po
'K I'—1
oW = D2 <1 + F’il> Polytropic (13)
poW = D*(1+4€(po) +p(po)) General (14)

which requires knowledge of the two first derivatives dp/dpg and de/dpy.



Next, we use Eq. 12 and the fact that

to replace Eq. 4 by an expression given only in terms of W and po(W):

2
P
p2 = Po _

= D3

0 = W2B?*+W)%? - W3(B%+W)%*?

= W2Q*+(Q-B)*(B* +2W) — (”3 - ) W2(B?+W)*  (16)

D2

(15)

To evaluate the Newton-Raphson step, all quantities in the equation above are
constants except W and po (W), for which the derivative of Eqs. 13 / 14 is given

by
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