
1 MHD Con2Prim

1.1 Notation

The current MHD con2prim routines assume a polytropic equation of state, but
may be generalized to include arbitrary equations of state so long as we may
evaluate the pressure as a function of density and internal energy, as well as its
derivatives with respect to those quantities.

To establish notation, we follow that of Noble et al. (2006) [astro-ph/0512420],
which describes the Con2Prim routines implemented in the HARM code, specifi-
cally, the 1DW and 2D schemes. We define the following quantities:

Rest mass density : ρ0

Internal energy : u

Pressure : p

Enthalpy : w ≡ ρ0 + u+ p

3− velocity : v (Valencia definition) : vi = γui

Lorentz factor : γ = (1− v2)−1/2

We begin from eight given conserved quantities: D, Si, τ, B
i, all of which have

been undensitized by dividing the typical GRHydro forms by
√
|γij | ≡ ψ6.

We may define a few auxiliary quantities for use in our numerical calcula-
tions. Define the momentum density

Qµ = αT 0
µ ; Qi ≡ Si (1)

and its normal projection Q̃ given by

Q̃µ = Qµ + (Qνn
ν)nµ (2)

both of which are known from the conservative variables and the metric, as well
as the quantity

W ≡ wγ2 (3)

1.2 2-d Newton-Raphson for General EOS

The 2-d Newton-Raphson approach implemented currently solves the following
two equations for the unknown quantities W and v2, with all other terms known
from the given conserved set:

Q̃2 = v2(B2 +W )2 − (Q ·B)2B
2 + 2W

W 2
(4)

Q · n = −B
2

2
(1 + v2) +

(Q ·B)2

2
W−2 −W + p(ρ0, u) (5)
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where all dot products are understood as 4-d here. The problematic step is
found in the routine eos info, where we actually calculate p from the conserved
variables and the current guess for W and v2 by noting that

(1− v2)W =
W

γ2
= w = ρ0 + u+ p√

1− v2 D =
D

γ
= ρ0

u+ p = (1− v2)W −
√

1− v2 D (6)

and then note that for a polytrope that p = (Γ− 1)u.
For a more general EOS, it is easier given the current structure of the EOS

interface in the EinsteinToolkit to solve for u, or, equivalently, ε = u/ρ0, and
then use it in the 2-D NR steps. First, noting that

p = w − ρ0 − u =
W

γ2
− ρ0 − u = (1− v2)W −D

√
1− v2 − u (7)

we may rewrite Eq. 5 as

Q · n = −B
2

2
(1 + v2) +

(Q ·B)2

2
W−2 − v2W −D

√
1− v2 − u (8)

To perform a NR step, we first set ρ0 = D
√

1− v2 and solve

u+ p(ρ0, u) = W (1− v2)−D
√

1− v2 (9)

which should work smoothly since the left hand side will in general be a mono-
tonic function of u. Next, we use those values and calculate the derivatives. We
find for ∂u/∂W :

∂u

∂W
+

(
∂p

∂u

)
ρ0

∂u

∂W
= 1− v2

∂u

∂W
=

1− v2

1 +
(
∂p
∂u

)
ρ0

(10)

and for ∂u/∂(v2):

∂u

∂(v2)
+

(
∂p

∂ρ0

)
u

[
−D

2
√

1− v2

]
+

(
∂p

∂u

)
ρ0

∂u

∂(v2)
= −W +

D

2
√

1− v2

∂u

∂(v2)
=

D
2
√

1−v2

[
1 +

(
∂p
∂ρ0

)
u

]
−W

1 +
(
∂p
∂u

)
ρ0

(11)

Finally, in the Newton-Raphson step, we find by taking derivatives of Eq. 8 that
the corresponding Jacobian entries in func vsq are given by

J(1, 0) : − (Q ·B)2

W 3
− v2 − ∂u

∂W

J(1, 1) : −B
2

2
−W +

D

2
√

1− v2
− ∂u

∂(v2)
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with no change required for the residuals so long as we record the corresponding
value of p(ρ0, u).

Note that for an EOS defined such that p = p(ρ0, ε), the derivatives above
are given by (

∂p

∂ρ0

)
u

=

(
∂p

∂ρ0

)
ε

− ε

ρ0

(
∂p

∂ε

)
ρ0(

∂p

∂u

)
ρ0

=
1

ρ0

(
∂p

∂ε

)
ρ0

1.2.1 An explicit version for general EOS

Note that if the loop-with-a-loop proves problematic, one may also use v2 and
ε as fundamental variables to construct a fully explicit scheme, and find

ρ0 = D
√

1− v2

W =
ρ0[1 + ε] + p(ρ0, ε)

1− v2

plugging the latter into Eqs. 4 and 5 and properly evaluating the Jacobian
matrix. Unfortunately, while a scheme using W and ε might yield simpler
derivatives in the Jacobian, solving for v(W, ε) seems like a particularly daunting
task.

1.3 The 1-d Newton Raphson solver for polytype EOS

For cases where the pressure and internal energy are functions of the rest
mass density only, called “polytype” throughout GRHydro, we need a differ-
ent Con2Prim inversion technique since the quantity Q ·n in Eqs. 5 / 8 requires
knowledge of τ , which is not evolved in these cases. Instead, the inversion uses
Eq. 4 only, as follows.

We may use Eq. 4 to eliminate the variable v2 from the Newton-Raphson
scheme by solving it for v2(W ):

v2(W ) =
W 2Q̃2 + (Q ·B)2(B2 + 2W )

w2(B2 +W )2
(12)

To perform the iteration, we may proceed by first solving for ρ0(W ) through
an independent Newton-Raphson loop over the equation

W = wγ2 =
wD2

ρ2
0

ρ0W = D2

(
1 +

ΓKρΓ−1

Γ− 1

)
Polytropic (13)

ρ0W = D2(1 + ε(ρ0) + p(ρ0)) General (14)

which requires knowledge of the two first derivatives dp/dρ0 and dε/dρ0.
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Next, we use Eq. 12 and the fact that

v2 =
ρ2

0

D2
− 1 (15)

to replace Eq. 4 by an expression given only in terms of W and ρ0(W ):

0 = W 2(B2 +W )2v2 −W 2(B2 +W )2v2

= W 2Q̃2 + (Q ·B)2(B2 + 2W )−
(
ρ2

0

D2
− 1

)
W 2(B2 +W )2 (16)

To evaluate the Newton-Raphson step, all quantities in the equation above are
constants except W and ρ0(W ), for which the derivative of Eqs. 13 / 14 is given
by

ρ0 +W
dρ0

dW
= DγKρΓ−2 dρ0

dW
dρ0

dW
=

ρ0

D2γKρΓ−2 −W
Polytropic (17)

ρ0 +W
dρ0

dW
= D2

(
dε

dρ0
+

dp

dρ0

)
dρ0

dW

dρ0

dW
=

ρ0

D2
(
dε
dρ0

+ dp
dρ0

)
−W

General (18)
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