
Performance and Optimization Abstractions for
Large Scale Heterogeneous Systems in the

Cactus/Chemora Framework
Erik Schnetter

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
Department of Physics, University of Guelph, Guelph, Ontario, Canada

Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, USA
Homepage: http://www.perimeterinstitute.ca/personal/eschnetter/

Abstract—We describe a set of lower-level abstractions to
improve performance on modern large scale heterogeneous sys-
tems. These provide portable access to system- and hardware-
dependent features, automatically apply dynamic optimizations
at run time, and target stencil-based codes used in finite differenc-
ing, finite volume, or block-structured adaptive mesh refinement
codes.

These abstractions include a novel data structure to manage
refinement information for block-structured adaptive mesh re-
finement, an iterator mechanism to efficiently traverse multi-
dimensional arrays in stencil-based codes, and a portable API
and implementation for explicit SIMD vectorization.

These abstractions can either be employed manually, or be
targeted by automated code generation, or be used via support
libraries by compilers during code generation. The implementa-
tions described below are available in the Cactus framework, and
are used e.g. in the Einstein Toolkit for relativistic astrophysics
simulations.

I. INTRODUCTION

Cactus [16], [12] is a software framework for high perfor-
mance computing, notably used e.g. in the Einstein Toolkit
[20], [15] for relativistic astrophysics. The Chemora project
[11] aims at significantly simplifying the steps necessary to
move from a physics model to an efficient implementation on
modern hardware. Starting from a set of partial differential
equations expressed in a high level language, it automatically
generates highly optimized code suitable for parallel execution
on heterogeneous systems. The generated code is portable to
many operating systems, and adopts widely used parallel pro-
gramming standards and programming models (MPI, OpenMP,
SIMD Vectorization, CUDA, OpenCL).

In this paper, we describe a set of lower-level abstractions
available in the Cactus framework, and onto which Chemora
is building. These abstractions are used by many Cactus
components outside the Chemora project as well.

These abstractions are:
1) a novel data structure to manage refinement information

for block-structured adaptive mesh refinement (section
II),

2) an iterator mechanism to efficiently traverse multi-
dimensional arrays in stencil-based codes, employing
dynamic auto-tuning at run time (section III),

3) a portable API and implementation for explicit SIMD
vectorization, including operations necessary for stencil-
based kernels (section IV).

These abstractions address issues we encountered when
porting Cactus-based applications to modern HPC systems
such as Blue Waters (NCSA), Hopper (NERSC), Kraken
(NICS), Mira (ALCF), or Stampede (TACC). Of course,
these abstractions also improve performance on “regular” HPC
systems, workstations, or laptops.

Below, we describe each of these abstractions in turn, and
conclude with general observations and remarks.

II. EFFICIENT BOUNDING BOX ALGEBRA

When using adaptive mesh refinement (AMR), one needs
to specify which regions of a grid need to be refined. The
shape of these regions can be highly irregular. Some AMR
algorithms (called cell-based AMR) allow this decision to
be made independently for every cell, others (called block-
structured AMR) require that refined points be clustered into
non-overlapping, rectangular regions for improved efficiency
[10], [9]. These regions can then efficiently be represented
e.g. via Fortran-style arrays on which loop kernels operate.
While cell-based AMR algorithms require tree data structures
to represent the refinement hierarchy, block-structured AMR
algorithms (such as available in Carpet [22], [21], [13]) require
data structures to represent sets of bounding boxes describing
the regions that make up a particular refinement level.

A bounding box (bbox) describes the location and shape of
a rectangular region, a bounding box set (bboxset) describes
a set of non-overlapping bounding boxes. There is a direct
connection between a bboxset and how data for grid points are
stored in memory. While a bboxset can in principle describe
any set of grid points (that may have arbitrary shape and may
be disconnected), one assumes that a bboxset comprises just
a few rectangular regions, which will then be handled more
efficiently.

Since a bboxset is used to describe the grid points that make
up a particular refinement level, its points lie on a uniform
grid; see figure 1a below for an example. Each grid point
can be described by its location, which can be expressed as

xi
0+ni ·∆xi where xi

0 and ∆xi describe origin and spacing of
the grid, and ni is a vector with integer elements. (The abstract
index i denotes that these are vectors, where i ∈ [1 . . . D] in
D dimensions.)

Carpet not only uses bounding box sets to describe refined
regions, it also offers a full algebra for bounding box sets. This
includes operations such as set union, intersection, difference,
complement, etc., and also includes additional operations
enabled by the grid structure such as shift (to move a set by
a certain offset) or expand (to grow a set in some directions),
or to change the grid spacing. It is also possible to convert a
bboxset into a normalized list of bboxes.

This full set algebra allows using bboxsets as a conve-
nient base for implementing many other operations, such as
determining the AMR operators for prolongation, boundary
prolongation, restriction, or refluxing; distributing a refinement
level’s grid points onto MPI processes; determining the com-
munication schedule; or performing consistency checks in a
simple-to-express manner. The price one has to pay is that
this requires an efficient data structure for these operations,
such as we describe below.

A. Background

There exist two simple approaches to describe sets: one can
either enumerate the elements of the set (e.g. in a list or a
tree), or one can view the set as a mapping from elements
to a boolean (storing one boolean for each element e.g. in
an array or a map). The former is efficient if the sets contain
few elements and if the elements can be meaningfully ordered,
the latter is efficient if the number of possible set elements is
small.

Unfortunately, neither is the case here: We intend to handle
a refinement level as a set of rectangular bboxes for efficiency;
building a data structure that disregards this structure and
manages points individually will be much less efficient. At
the same time, the possible number of points can be many
orders of magnitude larger than the actual number of points
in a region. Thus neither enumerating the grid points making
up a bboxset (e.g. via their integer coordinates) makes sense,
nor using a boolean array to describe which points belong to
a refinement. A more complex data structure is needed.

The literature describes a host of data structures for holding
sets of points, or to describe sets of regions. For example, GIS
(Geographic Information Systems) heavily rely on such data
structures, and R-trees or R∗-trees [23] find applications there.
While it would be possible to design an efficient bboxset data
structure based on these, they do not quite fit our problem
description: They assume that the points making up the set
are unstructured (i.e. do not need to be located on a uniform
grid), and make no attempt to cluster these points into bboxes.
On the other hand, R∗-trees are able to handle regions with
varying point density, which is not relevant for a uniform grid.

Other block-structured AMR packages introduce data struc-
ture to handle sets of points on uniform grids, but do not
provide a full set algebra. Internally, these bboxsets are often
represented as a list of bounding boxes. For example, AMROC

(a) L-shaped re-
gion

(b) x-derivative of
this region

(c) xy-derivative
of this region

Fig. 1: An L-shaped region and its derivatives. The xy-
derivative consists only of the “key points” of this shape, and
can be stored very efficiently.

[1] calls this structure BBoxList. (AMROC is a successor of
DAGH, which is in turn the intellectual predecessor of Carpet.)
Efficient operations may include creating a bboxset from a
list of non-overlapping bboxes, while adding an individual
bbox to an existing bboxset may not be an efficient operation.
Specific operations required for an AMR algorithm are then
implemented efficiently, but other operations – such as calcu-
lating the intersection between two bboxsets – are not. Most
AMR operations acting on bboxsets are then implemented in
an ad-hoc fashion and may introduce arbitrary restrictions, e.g.
regarding the size of the individual bboxes, or the number of
ghost zones for inter-process communication.

Carpet’s previous bboxset data structure was based on a
list of non-overlapping bboxes. It did provide a full algebra
of set operations, but with reduced efficiency. For example,
the list of bboxes was kept normalized, requiring an O(n2)
normalization step after each set operation, where n is the
number of bboxes in the list. Many other set operations also
had an O(n2) cost, as is common for set implementations
based on lists. This cost was acceptable for small numbers of
bboxes (say, less than 1,000), but began to dominate the grid
setup time when using more than 1,000 MPI processes, as the
regions owned by MPI processes are described by bboxes.

An earlier attempt to improve the efficiency of bboxsets
is described in [25]. Unfortunately, this work never left the
demonstration stage.

We are not aware of other literature or source code describ-
ing a generic, efficient data structure to handle sets of points
lying on a uniform grid. To our knowledge, this is a novel
data structure for AMR applications.

B. Discrete Derivatives of Bounding Box Sets

Our data structure is based on storing the discrete derivative
of a bboxset. An example is shown in figure 1. Algebraically,
the discrete derivative in the i-direction of a bboxset R is given
by

∂iR := R Y shift(R,−ei) (1)

where Y is the symmetric set difference (exclusive or),
shift(R, v) shifts the bboxset R by a certain offset v, and
ei is the unit vector in direction i (ith component is 1, all
other components are 0).

This discrete derivative is equivalent to a finite difference
derivative, applied to the boolean values describing the set
interpreted as integer values modulo 2, i.e. using the following
arithmetic rules for addition: 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 1 = 0.

Note that we choose to use a leftward finite difference; this
is a convention only and has no other relevance. We also note
that these discrete derivatives commute, so that the order in
which they are applied does not matter. Given a set derivative,
the anti-derivative is uniquely defined, and the original set can
be readily recovered:

R := ∂iR Y shift(R,−ei) (2)

This implies that the anti-derivative should be calculated by
scanning from left to right.

The salient point about taking the derivative is that it reduces
the number of elements in a set, assuming that the set has a
“regular” structure. For example, in two dimensions (as shown
above), an L-shaped region is described by just six points, and
in three dimensions, a cuboid (“3D rectangle”) is described by
just eight points. In fact, the number of points in the derivative
of a set increases with the number of bboxes required to
describe it – this is exactly the property we are looking for, as
the efficiency of a block-structured AMR algorithm already
depends on the number of bboxes required to represent the
bboxset.

Since the number of elements in the derivative of a set is
small, we store these points (i.e. their locations) directly in a
tree structure.

Instead of taking derivatives to identify boundaries, one
could also use a run-length encoding; the resulting algorithm
would be very similar.

C. Implementation

We now describe an efficient algorithm for set operations
based on storing bboxsets as derivatives.

Most set operations cannot directly be applied to bboxsets
stored as derivatives. The notable exception for this is the sym-
metric difference, which can directly be applied to derivatives:

R Y S = ∂R Y ∂S (3)

where we introduce the notation ∂R to denote subsequent
derivatives in all direction, i.e. ∂R := ∂0∂1R in two dimen-
sions, and ∂R := ∂0∂1∂2R in three dimensions. Property (3)
follows directly from the definition of the derivative above and
the properties of the exclusive-or operator.

To efficiently reconstruct a bboxset from its derivative, we
employ a sweeping algorithm [24]. Instead of directly taking
the derivative of a bboxset R in all directions, we employ
dimensional recursion. We represent a d-dimensional bboxset
by taking its derivative in direction d, and storing the resulting
set of d−1-dimensional bboxsets in a tree structure. We do this
recursively, until we arrive at 0-dimensional bboxsets. These
are single points, corresponding to a single boolean value that
we store directly, ending the recursion.

Since this data structure represents a bboxset, it is irrelevant
how the bboxset is represented internally. In particular, from

Rd−1 := {}
Sd−1 := {}
Td−1 := {}
n := 0
while find next n for which ∂dRd or ∂dSd do

if ∂dRd contains an element at n then
Rd1

:= Rd−1 Y ∂dRd[n]
end if
if ∂dSd contains an element at n then

Sd1 := Sd−1 Y ∂dSd[n]
end if
T ′d−1 := Td−1
Td−1 := Rd−1 � Sd−1
∂dTd[n] := Td−1 Y T ′d−1
if ∂dTd[n] not empty then

store ∂dTd[n]
end if

end while

Fig. 2: Algorithm for traversing two bboxsets R and S,
calculating T := R�S where � is an arbitrary set operation.
This algorithm applies to a d-dimensional set, recursing to
d− 1 dimensions.

the d-dimensional bboxset’s representation, it does not matter
how the d−1-dimensional bboxsets are internally represented,
and from an algorithm design point of view, the d − 1-
dimensional bboxsets are directly available for processing.

We now describe how to efficiently evaluate the result of
a set operation acting on two bboxsets R and S, calculating
T := R � S for an arbitrary set operation �. The main idea
is to sweep the domain in direction d, keeping track of of the
current state of the d−1-dimensional subsets Rd−1, Sd−1, and
Td−1 on the sweep line. (This “line” is a d − 1-dimensional
hypersurface in general.) As the sweep line progresses, we
update Rd−1 and Sd−1 by calculating the anti-derivative from
our stored derivatives, calculate Td−1 := Rd−1 � Sd−1, and
then calculate and store the derivate of Td−1 in a new bboxset
structure.

The operation Td−1 := Rd−1 � Sd−1 needs to be re-
evaluated whenever Rd−1 or Sd−1 change, i.e. once for each
element in the stored derivatives of Rd and Sd. Figure 2 lists
the respective algorithm.

Given that accessing set elements stored in a tree has a
cost of O(log n), set operations implemented via the algorithm
above have a cost that can be bounded by O([nd log nd]d),
where d is the number of dimensions, and nd is the maximum
number of bboxes encountered by a scan line in direction d.
In non-pathological cases, nd ≈ n1/d, leading to a log-linear
cost. Figure 3 demonstrates then scalability of Carpet for a
weak scaling benchmark, when this bboxset algorithm is used
for all set operations.

D. Future Work

This derivative bboxset data structure and its associated
algorithms are serial, as the sweeping algorithm is sequential

 0

 10

 20

 30

 40

 50

 16 64 256 1024 4096 16384

T
im

e
 p

e
r

g
ri
d
 p

o
in

t
R

H
S

 [
µ

s
]

cores

Einstein Toolkit benchmark: TOV (9 levels)

Blue Waters
Stampede

 0

 20

 40

 60

 80

 100

 120

 140

 16 64 256 1024 4096 16384 65536 262144T
im

e
 p

e
r

g
ri
d
 p

o
in

t
R

H
S

 [
µ

s
]

cores

Einstein Toolkit benchmark: TOV (unigrid)

Blue Waters
Hopper

Stampede
Vesta (BG/Q)

Fig. 3: Weak scaling benchmarks for a relativistic astrophysics
application with Carpet, using nine refinement levels (top) and
a uniform grid (bottom). Smaller times are better, ideal scaling
is a horizontal line. Carpet’s AMR implementation scales to
10k+ cores. With a uniform grid, Carpet scales to 250k+ cores.

and does not lead to a natural parallelization. (Of course,
different sets can still be processed in parallel.)

One parallelization approach would be to break each
bboxset into several independent pieces and to process these
in parallel. This would then also require stitching the results
together after each set operation.

III. DYNAMIC LOOP OPTIMIZATIONS

Most CPUs and accelerators (if present) of modern HPC
systems are multi-core systems with a deep memory hierarchy,
where each core requires SIMD vectorization to obtain the
highest performance. In addition, in-order-execution systems
(i.e. accelerators, including Blue Gene/Q) require SMT (sym-
metric multi-threading) to hide memory access and instruction
latencies. These architectures require significant programmer
effort to achieve good single-node performance, even when
leaving distributed memory MPI programming aside.1

Ignoring the issues of SIMD vectorization here (see section
IV below), one would hope that language standards and imple-
mentations such as OpenMP or OpenCL allow programmers to
ensure efficiency. However, this is not so, for several reasons:

• neither OpenMP nor OpenCL allow distinguishing be-
tween SMT, where threads share all caches, and coarse-

1Single-core performance is not really relevant here, since (a) applications
will use more than one core per node, and (b) the individual cores interact at
run time e.g. via cache access patterns.

grained multi-threading, where most cache levels are not
shared;

• it is very difficult, if not impossible to reliably predict
performance of compute kernels, so that dynamic (run-
time) decisions regarding optimizations are necessary;

• the most efficient multi-threading algorithms need to be
aware of cache line boundaries, which also needs to factor
into how multi-dimensional arrays are allocated; neither
OpenMP nor OpenCL provide support for this.

Here we present LoopControl, an iterator mechanism to
efficiently loop over multi-dimensional arrays for stencil-
based loop kernels. LoopControl parallelizes iterations across
multiple threads, across multiple SMT threads, performs loop
tiling to improve cache efficiency, and honours SIMD vector
sizes to ensure an efficient SIMD vectorization is possible.

LoopControl monitors the performance of its loops, and
dynamically adjusts its parameters to improve performance.
This not only immediately adapts to different machines and
to code modifications, but also to differing conditions at run
time such as changes to array sizes (e.g. due to AMR) or
changes to the physics behaviour in loop kernels. LoopControl
uses a random-restart hill-climbing algorithm for this dynamic
optimization.

The multi-threading is based on OpenMP threads, but em-
ploys a dynamic region selection and load distribution mech-
anism to handle kernels with non-uniform cost per iteration.

LoopControl employs hwloc [6] to query the system hard-
ware, and also queries MPI and OpenMP about process/thread
setups. hwloc also reports thread-to-core and thread-to-cache
bindings that are relevant for performance. All information
is gathered automatically, requiring no user setup to achieve
good performance.

LoopControl dynamically auto-tunes stencil codes at run
time. This is fundamentally different from traditional auto-
tuning, which surveys the parameter space for a set of opti-
mizations ahead of time, and then re-uses these survey results
at run time. See e.g. [14] for a description of ahead-of-time
auto-tuning of stencil-based codes, or [8] for a description of
ahead-of-time auto-tuning search algorithms.

Ahead-of-time surveys have the disadvantage that they
need to be repeated for each machine on which the code
runs, for each compiler version/optimization setting, for each
modification to the loop kernel, and also for different array
sizes. This makes it prohibitively expensive to use in a code
that undergoes rapid development, or where adaptive features
such as AMR are used. LoopControl does not have these
limitations, and to our knowledge, LoopControl’s dynamic
auto-tuning algorithm is novel.

A. Loop Traversal

LoopControl assumes that each loop iteration is independent
of the others, and can thus be executed in parallel or in an
arbitrary order.

Most architectures have several levels of caches. LoopCon-
trol implicitly chooses one cache level for which it optimizes.

The random-restart algorithm (see below) will explore op-
timizing for other cache levels as well, and will settle for
that level that yields the largest performance gain. It would
be straightforward to implement support for multiple cache
levels, but it is not clear that this would significantly improve
performance in practice.

LoopControl uses the following mechanisms, in this order,
to split the index space of a loop:

1) coarse-grained (non-SMT) multithreading (expecting no
shared caches)

2) iterating over loop tiles (each expected to be small
enough to fit into the cache)

3) iterating within loop tiles
4) fine-grained (SMT) multithreading (expecting to share

the finest cache level)
5) SIMD vectorization (see section IV below).
The index space is only known at run time. It is split

multiple times to find respective smaller index spaces for
each of the mechanisms described above. Each index space
is an integer multiple of the next smaller index space, up to
boundary effects.

Certain index space sizes and offsets have to obey certain
constraints:
• SIMD vectorization requires that its index space to be

aligned with and have the same size as the SIMD hard-
ware vector size.

• The SMT multithreading index space should be a multiple
of the vector size, so that partial vector store operations
are not required except at loop boundaries (as some
hardware does not offer thread-safe partial vector stores).

• The number of SMT and non-SMT threads is determined
by the operating system upon program start, and are not
modified (i.e. all threads are used).

• Loop tiles should be aligned with cache lines for effi-
ciency.

Since LoopControl cannot influence how arrays are allo-
cated, the programmer needs to specify the array alignment,
if any. The first array element is expected be aligned with the
vector size or the cache line size (which can always be ensured
when the array is allocated), and the array dimensions may or
may not be padded to multiples of the vector size or cache
line size. Higher alignment leads to more efficient execution on
some hardware, since edge effects such as partial vector stores
or partial cache line writes can be avoided. LoopControl offers
support for all cases.

B. Random-Restart Hill-Climbing

Since each loop behaves differently (obviously), and since
this performance behaviour also depends on the loop bounds,
LoopControl optimizes each loop setup independently. A loop
setup includes the loop’s source code location, index space,
array alignment, and number of threads available.

Several execution parameters describe how a loop setup is
executed, describing how the index space is split according to
the mechanisms described above.

Each newly encountered loop setup has its initial execution
parameters chosen heuristically. As timing measurements of
the loop setup’s execution become available, these parameter
settings are optimized. It is well known that the execution
time of a loop kernel depends on optimization parameters in a
highly non-linear and irregular manner, with many threshold
effects present. Simplistic optimization algorithms will thus
fail. For this optimization, we use a random-restart hill-
climbing algorithm as described in the following.

Our optimization algorithm has two competing goals: (1) for
a given execution parameter setting, quickly find the nearby
local optimum, and (2) do not get stuck in local optima;
instead, explore the whole parameter space. To find a local
optimum, we use a hill climbing algorithm: we explore the
local neighbourhood of a given parameter setting, and move
to any setting that leads to a shorter run time, discarding
parameter settings that lead to longer execution times. To
explore the whole parameter space, we use a random restart
method: once we arrived in a local optimum, we decide
with a certain, small probability to chose a random new
parameter setting. After exploring the neighbourhood of this
new parameter setting, we either remain there (if it is better),
or return to the currently known best setting.

There is one major difference between an ahead-of-time ex-
ploration of the parameter space, and a dynamic optimization
at run time: The goal of an ahead-of-time exploration is to
find the best possible parameter setting, while the goal of a
run-time optimization is to reduce the overall run time. A bad
parameter setting can be significantly worse than a mediocre
parameter setting, and can easily have a running time that is an
order of magnitude higher. That means that exploring even one
such bad parameter setting has a cost that is only amortized if
one executes hundreds of loops with good parameter settings.

This makes it important to be cautious about exploring the
parameter space, and to very quickly abort any excursion that
significantly worsens the run time. It is much more impor-
tant to find a mediocre improvement and to find it quickly,
than to find the optimum parameter choice and incurring a
large overhead. In particular, we find that genetic algorithms
or simulated annealing spend much too much time on bad
parameter settings, and while they may ultimately find good
parameter settings, this comes at too great a cost to be useful
for a dynamic optimization to be applied at run-time.

For the relatively large kernels present in our
astrophysics application, we observe roughly a 10%
improvement over a naive OpenMP parallelization via
#pragma omp parallel for for the first loop
executions via our heuristic parameter choices, and an
additional approximately 10% improvement in the long run
via LoopControl’s dynamic optimizations.

C. Future Work

It may be worthwhile to save and restore execution param-
eter settings and their respective timings. Although these may
be invalidated by code modifications or changes to the build
setup, this would provide a way to remember exceptionally

good parameter settings that may otherwise be difficult to re-
discover.

In particular in conjunction with OpenCL, where it is simple
to dynamically re-compile a loop kernel, LoopControl’s opti-
mizations could also include compile-time parameter settings
such as loop unrolling or prefetching.

In addition to these low-level loop execution optimizations,
one can also introduce optimizations at a higher level, such
as e.g. loop fission or loop fusion. These optimizations can
have large impacts on performance if they make code fit
into instruction- or data-caches. Combining LoopControl’s
optimizer with a way to select between different (sets of) loop
kernels would be straightforward.

IV. SIMD VECTORIZATION

Modern CPUs offer SIMD (short vector) instructions that
operate on a small number of floating point values simulta-
neously; the exact number (e.g. 2, 4, or 8) is determined by
the hardware architecture. To achieve good performance, it
is essential that SIMD instructions are used when compiling
compute kernels; not doing so will generally reduce the
possible theoretical peak performance by this factor. Of course,
this is relevant only for compute-bound kernels.

A. Background

However, using SIMD instructions typically comes with a
set of restrictions that need to be satisfied; if not, SIMD in-
structions either cannot be used, or lose a significant fraction of
their performance. One of these restrictions is that it is efficient
to perform element-wise operations, but quite inefficient to
reduce across a vector. That is, while e.g. ai := bi + ci is
highly efficient, the operation s :=

∑
i ai will be relatively

expensive. This means that one should aim to vectorize across
calculations that are mutually independent. As a rule of thumb,
it is better to vectorize across different loop iterations than to
try and find independent operations within a single iteration.

Another restriction concerns memory access patterns. Mem-
ory and cache subsystems are these days highly vectorized
themselves (with typical vector sizes of e.g. 64 bytes), and
efficient load/store operations for SIMD vectors require that
these vectors are aligned in memory. Usually, a SIMD vector
with a size of N bytes needs to be located at an address that
is a multiple of N . Unaligned memory accesses are either
slower, or are not possible at all and then need to be split into
two aligned memory accesses and shift operations.

Finally, if one vectorizes across loop iterations, the number
of iterations may not be a multiple of the vector size. Similarly,
if one accesses an array in a loop, then the first accessed array
element may not be aligned with the vector size. In both cases,
one needs to perform operations involving only a subset of the
elements of an SIMD vector. This is known as masking the
vector operations. The alternative – using scalar operations for
these edge cases – is very expensive if the vector size is large.

Unfortunately, the programming languages that are widely
used in HPC today (C, C++, Fortran) do not offer any
constructs that would directly map to these SIMD machine

instructions, nor do they offer declarations that would ensure
the necessary alignment of data structure. It is left to the
compiler to identify kernels where SIMD instructions can
be used to increase efficiency, and to determine whether
data structures have the necessary alignment. Often, system-
dependent source code annotations can be used to help the
compiler, such as e.g. #pragma ivdep or #pragma simd
for loops, or __builtin_assume_aligned for pointers.

Generally, compiler-based vectorization works fine for small
loop kernels, surrounded by simple loop constructs, contained
in small functions. This simplifies the task of analyzing the
code, proving that vectorization does not alter the meaning,
and allowing estimating the performance of the generated code
to ensure that vectorization provides a benefit. However, we
find that the converse is also true: large compute kernels,
kernels containing non-trivial control flow (if statements), or
using non-trivial math functions (exp, log) will simply not
be vectorized by a given compiler. “Convincing” a certain
compiler that a loop should be vectorized remains a highly
system-specific and vendor-specific (i.e. non-portable) task. In
addition, if a loop is vectorized, then the generated code may
make pessimistic assumptions regarding memory alignment
that lead to sub-ideal performance, in particular when stencil
operations in multi-dimensional arrays are involved.

The root of the problem seems to be that the compiler’s
optimizer does not have access to sufficiently rich, high-level
information about the employed algorithms and their imple-
mentation to make good decisions regarding vectorization.
(The same often holds true for other optimizations as well,
such as e.g. loop fission/fusion, or cloning functions to modify
their interfaces.) We hope that the coming years will lead to
widely accepted ways to pass such information to the compiler,
either via new languages or via source code annotations.
For example, the upcoming OpenMP 4.0 standard will pro-
vide a #pragma omp simd to enforce vectorization, GCC
is already providing __builtin_assume_aligned for
pointers, and Clang’s vectorizer has as of version 3.3 arguably
surpassed that of GCC 4.8, justifying our hope that things are
improving.

B. Manual Vectorization

The hope for future compiler features expressed in the
previous section does not help performance today. Today, vec-
torizing a non-trivial code requires using architecture-specific
and sometimes compiler-specific intrinsics that provide C/C++
datatypes and function calls mapping directly to respective
vector types and vector instructions that are directly supported
by the hardware. This allows achieving very high performance,
at the cost of portability.

For example, the simple loop

for (int i=0; i<N; ++i) {
a[i] = b[i] * c[i] + d[i];

}

can be manually vectorized with Intel/AMD’s SSE2 intrinsics
(for all 64-bit Intel and AMD CPUs) as

#include <emmintrin.h>
for (int i=0; i<N; i+=2) {

__m128d ai, bi, ci, di;
bi = _mm_load_pd(&b[i]);
ci = _mm_load_pd(&c[i]);
di = _mm_load_pd(&d[i]);
ai = _mm_add_pd(_mm_mul_pd(bi, ci), ci);
_mm_store_pd(&a[i], ai);

}

or with IBM’s QPX intrinsics (for the Blue Gene/Q) as

#include <builtins.h>
for (int i=0; i<N; i+=4) {

vector4double ai, bi, ci, di;
bi = vec_lda(0, &b[i]);
ci = vec_lda(0, &c[i]);
di = vec_lda(0, &d[i]);
ai = vec_madd(bi, ci, di);
vec_sta(ai, 0, &a[i]);

}

These vectorized loops assume that the array size N is a
multiple of the vector size, and that the arrays are aligned with
the vector size. If this is not the case, the respective vectorized
code is more complex.

While the syntax of the vectorized kernels looks quite
different, the semantic transformations applied to the original
kernel are quite similar. Vector values are stored in variables
that have a specific type (__mm128d, vector4double),
memory access operations have to be denoted explicitly
(_mm_load_pd, vec_lda), and arithmetic operations be-
come function calls (_mm_add_pd, vec_madd). Other ar-
chitectures require code transformations along the very same
lines.

Note that QPX intrinsics support a fused multiply-add (fma)
instruction that calculates a · b+ c in a single instruction (and
presumably also in a single cycle). Regular C or C++ code
would express these via separate multiply and add operations,
and it would be the task of the compiler to synthesize such
fma operations when beneficial. When writing vectorized
code manually, the compiler will generally not synthesize
vector fma instructions, and this transformation has to be
applied explicitly. Today, most CPU architectures support fma
instructions.

Vector architectures relevant for high-performance comput-
ing these days include Intel’s and AMD’s SSE instructions,
Intel and AMD’s AVX instructions (both SSE and AVX exist
in several variants), Intel’s Xeon Phi vector instructions, IBM’s
Altivec and VSX instructions for Power CPUs, and IBM’s
QPX instructions for the Blue Gene/Q. On low-power devices,
ARM’s NEON instructions are also important.

C. An API for Explicit Vectorization

Based on architecture- and compiler-dependent intrinsics,
we have designed and implemented a portable, efficient
API for explicit loop vectorization. This API targets stencil-
based loop kernels, as can e.g. be found in codes us-
ing finite differences or finite volumes, possibly via block-
structured adaptive mesh refinement. Our implementation

LSUThorns/Vectors uses C++ and supports all major
current HPC architectures [20], [15].

The API is intended to be applied to existing scalar codes
in a relatively straightforward manner. Data structures do not
need to be reorganized, although it may provide a performance
benefit if they are, e.g. ensuring alignment of data accessed by
vector instructions, or choosing integer sizes compatible with
the available vector instructions.

The API consists of the following parts:

• data types holding vectors of real numbers (float/double),
integers, and booleans (e.g. for results of comparison
operators, or for masks);

• the usual arithmetic operations (+ - * /, copysign, fma,
isnan, signbit, sqrt, etc.), including comparisons, boolean
operations, and an if-then construct;

• “expensive” math functions, such as cos, exp, log, sin, etc.
that are typically not available as hardware instructions;

• memory load/store operations, supporting both aligned
and unaligned access, supporting masks, and possibly
offering to bypass the cache to improve efficiency;

• helper functions to iterate over a index ranges, generating
masks, and ensuring efficient array access, suitable in
particular for stencil-based kernels.

We describe these parts in more detail below.
The OpenCL C language already provides all but the last

item. Once mature OpenCL implementations become available
for HPC platforms – that is, for the CPUs on which the
applications will be running, not only for accelerators that
may be available there – this API could be replaced by
programming in OpenCL C instead. We are actively involved
in the pocl (Portable Computing Language) project [5] which
develops a portable OpenCL implementation based on the
LLVM infrastructure [2].

1) Data Types and Arithmetic Operations: The first two
items – data types and arithmetic operations – can be directly
mapped to the vector intrinsics available on the particular
architecture. We remark that vectorized integer operations are
often not available, and that vectorized boolean values are
internally often represented and handled quite differently from
C or C++.

For each architecture, the available vector instruction set and
vector sizes are determined automatically at compile time, and
the most efficient vector size available is chosen. Both double
and single precision vectors are supported.

For several architectures, this API is implemented via
macros instead of via inline functions. Surprisingly, several
widely used compilers for HPC systems cannot handle inline
functions efficiently. The most prominent consequence of this
is that operator overloading is not possible; instead, arithmetic
operations have to be expressed in a function call syntax such
as vec_add(a,b). While straightforward, this unfortunately
reduces readability somewhat.

A trivial implementation, useful e.g. for debugging, maps
this API to scalar operations without any loss of efficiency.

Using our API, the example from above becomes

#include <vectors.h>
for (int i=0; i<N; i+=CCTK_REAL_VEC_SIZE) {

CCTK_REAL_VEC ai, bi, ci, ci;
bi = vec_load(&b[i]);
ci = vec_load(&c[i]);
di = vec_load(&d[i]);
ai = vec_madd(bi, ci, di);
vec_store(&a[i], ai);

}

This code is portable across many architectures. However, this
example still assumes that all arrays are aligned with the vector
size, that the array size is a multiple of the vector size, and
does not include any cache optimizations.
if statements require further attention when vectorizing,

since different elements of a vector may lead to different paths
through the code. Similarly, the logical operators && and ||
cannot have shortcut semantics with vector operands (see e.g.
the OpenCL standard [3]). To translate if statements, we
provide a function ifthen(cond, then, else) with
a definition very similar to the ?: operator, but without
shortcut semantics. (This corresponds to the OpenCL select
function, except for the order of the arguments.)

To vectorize an if statement, it needs to be rewritten using
this ifthen function, taking into account that both the then
and the else branches will be evaluated for all vector elements.
Often, declaring separate local variables for the then and
the else branches and moving all memory store operations
(if any) out of the if statement (and turning them into
masked store operations if necessary) make this transformation
straightforward.

2) “Expensive” Math Functions: Some compilers (IBM,
Intel) offer efficient implementations of the “expensive” math
functions that can be used (mass_simd, mkl_vml), while
other compilers (GCC, Clang) do not. To support system ar-
chitectures other than IBM’s and Intel’s, we have implemented
an open-source library Vecmathlib [7], [18] providing portable,
efficient, vectorized math functions.2

The OpenCL C language standard requires that these math
functions be available for vector types. For the pocl project’s
OpenCL compiler, we thus use Vecmathlib to implement these
where no vendor library is available.

3) Memory Access: The API supports a variety of access
modes for memory load/store operations that are likely to
occur in stencil-based codes. In particular, great care has
been taken to ensure that the most efficient code is generated
depending on either compile-time or run-time guarantees that
the code can make regarding alignment. Some code transfor-
mations, such as array padding of multi-dimensional arrays,
enable such guarantees and can thus improve performance.

Let us consider a slightly more complex example using
stencil operations. The code below calculates a derivative via
a forward finite difference:

for (int i=0; i<N-1; ++i) {
a[i] = b[i+1] - b[i];

2Under some circumstances, this library is for scalar code faster than glibc
on Intel/AMD CPUs.

}

We assume that the arrays a and b are aligned with the vector
size, and that N−1 is a multiple of the vector size. This code
can then be vectorized to

#include <vectors.h>
for (int i=0; i<N-1; i+=CCTK_REAL_VEC_SIZE) {

CCTK_REAL_VEC ai, bi, bip;
bi = vec_load(&b[i]);
bip = vec_loadu_off(+1, &b[i+1]);
ai = vec_sub(bip, bi);
vec_store(&a[i], ai);

}

Here, the function vec_loadu_off(offset, ptr)
loads a value from memory that is located at an offset of
+1 from an aligned value. This specification expects that the
offset is known at compile time, and allows the compiler
to generate the most efficient code for this case. A similar
function vec_loadu(ptr) allows loading unaligned values
if the offset is unknown at compile time. Equivalent functions
exist for storing values.

4) Iterators: Finally, our API provides an “iterator” to sim-
plify looping over index ranges. Typically, only the innermost
loop of a loop nest is vectorized, and it is expected that this
loop has unit stride. This iterator also sets a mask to handle
edge cases at the beginning and end of the index range. This
is also connected to shared memory parallelization such as via
OpenMP, where one wants to ensure that an OpenMP paral-
lelization of the innermost loop does not introduce unaligned
loop bounds.

The scalar code below evaluates a centered finite difference:

for (int i=1; i<N-1; ++i) {
a[i] = 0.5 * (b[i+1] - b[i-1]);

}

We assume again that the arrays a and b are aligned with
the vector size. We also assume that the array is padded, so
that we can access elements that are “slightly” out of bounds
without causing a segmentation fault. Both conditions can
easily be guaranteed by allocating the arrays correspondingly,
e.g. via posix_memalign. If the arrays’ alignment is not
known at compile time, then they need to be accessed via
vec_loadu and vec_storeu functions instead. We make
no other assumptions, and the array can have an arbitrary size.
This leads to the following vectorized code:

#include <vectors.h>
VEC_ITERATE(i, 1, N-1) {

CCTK_REAL_VEC ai, bim, bip;
bim = vec_loadu_off(-1, &b[i-1]);
bip = vec_loadu_off(+1, &b[i+1]);
ai = vec_mul(vec_set1(0.5), vec_sub(bip, bim));
vec_store_nta_partial(&a[i], ai);

}

The macro VEC_ITERATE(i, imin, imax) expands to
a loop that iterates the variable i from imin to imax with
a stride of the vector size. It also ensures that i is always
a multiple of the vector size, starting from a lower value

than imin if necessary. Additionally, it prepares an (implicitly
declared) mask in each iteration.

The suffix _partial in the vector store operation indi-
cates that this mask is taken into account when storing. The
code is optimized for the case where all vector elements are
stored. The suffix _nta invokes a possible cache optimization,
if available. It indicates that the stored value will in the near
future not be accessed again (“non-temporal access”). This
hint can be used by the implementation to bypass the cache
when storing the value.

Most CPU architectures do not support masking arbitrary
vector operations, while masking load/store operations may
be supported. In the examples given here, we only mask
store operations, assuming that arrays are sufficiently padded
for load operations to always succeed. The unused vector
elements are still participating in calculations, but this does
not introduce an overhead.

This iterator provides provides a generic mechanism to
traverse arrays holding scalar values via vectorized operations.
It thus provides the basic framework to enable vectorization
for a loop, corresponding to a #pragma simd statement.
By implicitly providing masks that can be used when storing
values, aligned and padded arrays are handled efficiently.

Different from the previous items, this iterator is applicable
even for OpenCL C code, since no equivalent constructs exist
in the language.

D. Applications

The API described above allows explicitly vectorizing C++
code. While somewhat tedious, it is in our experience straight-
forward to vectorize a large class of scalar codes where
vectorization is beneficial. There is special support for efficient
support of stencil-based codes on block-structured grids using
multi-dimensional arrays.

While manual vectorization is possible, this API also lends
itself for automated code generation. We use Kranc [17],
[19] to create Cactus components from partial differential
equations written in Mathematica notation, and have modified
Kranc’s back-end to emit vectorized code. Mathematica’s pat-
tern matching capabilities are ideal to apply optimizations to
the generated vector expressions that the compiler is unwilling
to perform.

V. CONCLUSION

This paper describes a set of abstractions to improve perfor-
mance on modern large scale heterogeneous systems targetting
stencil-based codes. These abstractions are available in the
Cactus framework, and are used in “real-world” applications,
such as in relativistic astrophysics simulations via the Einstein
Toolkit.

Our implementations of these abstractions require access
to low-level system information. Especially hwloc [6] and
PAPI [4] provide valuable information. While hwloc is very
portable and easy to use, we are less satisfied with the state of
PAPI installations; these are often not available (and neither
are alternatives), not even on freshly installed cutting-edge

systems. We are highly dissatisfied with this situation, which
forces us to resort to crude overall timing measurements to
evaluate performance.

While our performance and optimization abstractions are
portable, they are by their very nature somewhat low-level,
and using them directly e.g. from C++ code can be tedious,
although straightforward. We anticipate that they will see most
use either via automated code generation (e.g. via Kranc [17],
[19]), or via including them into compiler support libraries
(e.g. via pocl [5]).

ACKNOWLEDGEMENTS

We thank Marek Blazewicz, Steve Brandt, Peter Diener,
Ian Hinder, David Koppelman, and Frank Löffler for valuable
discussions and feedback. We also thank the Cactus and the
Einstein Toolkit developer community for volunteering to test
these implementations in their applications.

This work was supported by NSF award 0725070 Blue
Waters, NSF awards 0905046 and 0941653 PetaCactus, NSF
award 1212401 Einstein Toolkit, and an NSERC grant to E.
Schnetter.

This work used computational systems at ALCF, NCSA,
NERSC, NICS, Sharcnet, TACC, as well as private systems at
Caltech, LSU, and the Perimeter Institute.

REFERENCES

[1] AMROC: A generic framework for blockstructured adaptive mesh re-
finement in object-oriented C++, URL http://amroc.sourceforge.net/.

[2] The LLVM compiler infrastructure, URL http://llvm.org/.
[3] OpenCL: the open standard for parallel programming of heterogeneous

systems, URL http://www.khronos.org/opencl/.
[4] PAPI: Performance application programming interface, URL http://icl.

cs.utk.edu/papi/.
[5] pocl - portable computing language, URL http://pocl.sourceforge.net/.
[6] Portable hardware locality (hwloc), URL http://www.open-mpi.org/

projects/hwloc/.
[7] Vecmathlib: Efficient, vectorizable math functions, URL https://

bitbucket.org/eschnett/vecmathlib/.
[8] Prasanna Balaprakasha, Stefan M. Wilda, and Paul D. Hovlanda, Can

search algorithms save large-scale automatic performance tuning?,
Procedia Computer Science 4 (2011), 21362145.

[9] M. Berger and I. Rigoutsos, An algorithm for point clustering and grid
generation, IEEE Trans. Systems Man Cybernet. 21 (1991), no. 5, 1278–
1286.

[10] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic
partial differential equations, Journal of Computational Physics 53
(1984), no. 3, 484–512.

[11] Marek Blazewicz, Steven R. Brandt, Peter Diener, David M. Koppelman,
Krzysztof Kurowski, Frank Löffler, Erik Schnetter, and Jian Tao, A
massive data parallel computational framework for petascale/exascale
hybrid computer systems, Parallel Computing 2011 (ParCo2011), 2012,
eprint arXiv:1201.2118 [cs.DC].

[12] Cactus Computational Toolkit, URL http://www.cactuscode.org/.
[13] Carpet: Adaptive Mesh Refinement for the Cactus Framework, URL

http://www.carpetcode.org/.
[14] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan

Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick,
Stencil computation optimization and auto-tuning on state-of-the-art
multicore architectures, Proceedings of the 2008 ACM/IEEE conference
on Supercomputing (Piscataway, NJ, USA), SC ’08, IEEE Press, 2008,
pp. 4:1–4:12, URL http://dl.acm.org/citation.cfm?id=1413370.1413375.

[15] Einstein Toolkit: Open software for relativistic astrophysics, URL http:
//einsteintoolkit.org/.

[16] Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Massó, Thomas
Radke, Edward Seidel, and John Shalf, The Cactus framework and
toolkit: Design and applications, Vector and Parallel Processing – VEC-
PAR’2002, 5th International Conference, Lecture Notes in Computer
Science (Berlin), Springer, 2003, URL http://edoc.mpg.de/3341.

[17] Sascha Husa, Ian Hinder, and Christiane Lechner, Kranc: a Mathematica
application to generate numerical codes for tensorial evolution equa-
tions, Comput. Phys. Commun. 174 (2006), 983–1004, eprint arXiv:gr-
qc/0404023.

[18] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle
Raiskila, Jarmo Takala, and Heikki Berg, pocl: A performance-portable
OpenCL implementation, 2013.

[19] Kranc: Kranc assembles numerical code, URL http://kranccode.org/.
[20] Frank Löffler, Joshua Faber, Eloisa Bentivegna, Tanja Bode, Peter

Diener, Roland Haas, Ian Hinder, Bruno C. Mundim, Christian D. Ott,
Erik Schnetter, Gabrielle Allen, Manuela Campanelli, and Pablo Laguna,
The Einstein Toolkit: A Community Computational Infrastructure for
Relativistic Astrophysics, Class. Quantum Grav. 29 (2012), no. 11,
115001, eprint arXiv:1111.3344 [gr-qc].

[21] Erik Schnetter, Peter Diener, Ernst Nils Dorband, and Manuel Tiglio,
A multi-block infrastructure for three-dimensional time-dependent nu-
merical relativity, Class. Quantum Grav. 23 (2006), S553–S578, eprint
arXiv:gr-qc/0602104.

[22] Erik Schnetter, Scott H. Hawley, and Ian Hawke, Evolutions in 3-D
numerical relativity using fixed mesh refinement, Class. Quantum Grav.
21 (2004), 1465–1488, eprint arXiv:gr-qc/0310042.

[23] Wikipedia, R* tree — Wikipedia, the free encyclopedia, 2013, [Online;
accessed 14-July-2013], URL http://en.wikipedia.org/w/index.php?title=
R* tree&oldid=563447375.

[24] , Sweep line algorithm — Wikipedia, the free encyclopedia, 2013,
[Online; accessed 14-July-2013], URL http://en.wikipedia.org/w/index.
php?title=Sweep line algorithm&oldid=544639396.

[25] Ashley Zebrowski, Frank Löffler, and Erik Schnetter, The BL-Octree: An
Efficient Data Structure for Discretized Block-Based Adaptive Mesh Re-
finement, ParCo2011: Proceeings of the 2011 International Conference
on Parallel Computing, ParCo Conferences, 2011.

