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The BSSN formulation

The 3+1 ADM evolution equations are

(∂t − Lβ) γij = −2αKij , (1)

(∂t − Lβ) Kij = −DiDjα + α(Rij + KKij − 2KikK
k
j), (2)

and the constraints are

H ≡ R + K 2 − KijK
ij = 0, (3)

Mi ≡ Dj(K
ij − γ ijK ) = 0. (4)

These equations were used a lot in the early years of numerical relativity.
However, it was later discovered that the ADM evolution equations are
only weakly hyperbolic.
In the mid to late 90’s a new formulation was introduced that proved to
be much more robust and stable: The BSSN formulation.
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The BSSN formulation (continued)

Introduce a conformal rescaling of the three metric

γij = ψ4γ̃ij . (5)

We choose ψ = γ1/12 such that the determinant of γ̃ij is 1

det(γ̃ij) = det(ψ−4γij) = det(γ−1/3γij) = γ−1det(γij) = 1. (6)

In addition we introduce a trace decomposition of the extrinsic curvature.

K = γ ijKij , (7)

Aij = Kij −
1

3
γijK . (8)

We then promote the following variables to evolution variables

φ = lnψ =
1

12
ln γ, (9)

K = γijK
ij , (10)

γ̃ij = e−4φγij , (11)

Ãij = e−4φAij . (12)
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The BSSN formulation (continued)

We finally additionally promote the conformal connection functions

Γ̃i = γ̃jk Γ̃i
jk = −∂j γ̃ ij , (13)

to evolved variables as well.
The final set of evolution variables are φ, K , γ̃ij , Ãij and Γ̃i .
The BSSN evolution equations can be derived from the ADM equations.
As an example take the equation for φ.

(∂t − Lβ) φ = ∂0φ = ∂0

(
1

12
ln γ

)
=

1

12

1

γ
∂0γ. (14)

Using the expression for the derivative of the determinant of the metric in
terms of the derivatives of the metric (∂0γ = γγij∂0γij) we find

(∂t − Lβ) φ = ∂0φ =
1

12
γ ij∂0γij =

1

12
γ ij(−2αKij) = −1

6
αK . (15)
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The BSSN formulation (continued)

The evolution equation for all the BSSN variables are1

∂t γ̃ij = − 2αÃij + βk∂k γ̃ij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k , (16)

∂tφ = − 1

6
αK + βk∂kφ+

1

6
∂kβ

k , (17)

∂tÃij = e−4φ[−DiDjα + αRij ]
TF + α(KÃij − 2Ãik Ã

k
j)

+ βk∂k Ãij + Ãik∂jβ
k + Ãjk∂iβ

k − 2

3
Ãij∂kβ

k , (18)

∂tK = − D iDiα + α(Ãij Ã
ij +

1

3
K 2) + βk∂kK , (19)

∂t Γ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ ij∂j∂kβ

k + βj∂j Γ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j

− 2Ãij∂jα + 2α(Γ̃i
jk Ã

jk + 6Ãij∂jφ−
2

3
γ̃ ij∂jK ). (20)

1Note: the matter terms are left out.
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The BSSN formulation (continued)

Here Rij = R̃ij + Rφij , where

Rφij = − 2D̃i D̃jφ− 2γ̃ij D̃
kD̃kφ+ 4D̃iφ D̃jφ− 4γ̃ij D̃

kφ D̃kφ, (21)

R̃ij = − 1

2
γ̃ lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃k Γ̃(ij)k

+ γ̃ lm
(

2Γ̃k
l(i Γ̃j)km + Γ̃k

imΓ̃klj

)
. (22)
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The BSSN formulation (continued)

The constraints are

H̃ ≡ R +
2

3
K 2 − Ãij Ã

ij = 0, (23)

M̃i ≡ D̃j Ã
ij + 6Ãij∂jφ−

2

3
γ̃ ij∂jK = 0, (24)

G̃ ≡ γ̃ − 1 = 0, (25)

Ã ≡ γ̃ ij Ãij = 0, (26)

L̃i ≡ Γ̃i + ∂j γ̃
ij = 0. (27)

The constraints G̃ and Ã are enforced actively at each timestep.
The other constraints (H̃, M̃i and L̃i ) are not enforced.
To improve stability and to help maintain L̃i at a low level the following
rule is employed in an implementation

Where derivatives of Γ̃i are needed the evolved Γ̃i are used directly.
Where Γ̃i are needed without taking derivatives γ̃jk Γ̃i

jk are used
instead.
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The BSSN formulation (continued)

In order to evolve a spacetime with the BSSN equations, you have to
specify the gauges α and βi .
Most codes use the “moving puncture” gauges

∂tα = −2αK + βi∂iα, (28)

∂tβ
i =

3

4
B i + βj∂jβ

i , (29)

∂tB
i = ∂t Γ̃

i − ηB i + βj∂j(B
i − Γ̃i ) (30)

or slight variations thereof for black hole spacetime evolutions.
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Puncture data

The puncture approach to binary black hole initial data is

γphij = ψ4γab, Kph
ij = ψ−2Kij , (31)

where γij is chosen to be the flat metric and Kij is assumed to be tracefree.
The constraint equations become

0 = ∆ψ +
1

8
K ijKijψ

−7 (32)

0 = DjK
ij . (33)

The momentum constraint has an analytic solution

K ij
BY =

3

2r2

(
P inj + P jni − (γ ij − ninj)Pknk

)
+

3

r3

(
εiklSknln

j + εjklSknln
i
)
. (34)

P i and S i are the linear momentum and spin of the black hole.
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Puncture data (continued)

For Kij = 0 the Hamiltonian constraint has a simple solution for N black
holes.

ψ = 1 +
N∑
i=1

mi

2|~r −~ri |
. (35)

Inspired by this, for Kij 6= 0 we make the ansatz

ψ =
1

α
+ u,

1

α
=

N∑
i=1

mi

2|~r −~ri |
, (36)

In which case the Hamiltonian constraint becomes an equation for u

∆u +
1

8
α7K ijKij(1 + αu)−7 = 0. (37)

It can be shown that u will be C 2 at the location of the ‘punctures’ and
that ψ has a unique solution.
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Finite differencing

With finite differencing we discretize a function by sampling it at a
collection of grid points.
The grid points are usually (but not necessarily) equally spaced.
We can then approximate derivatives of a function at a grid point by a
weigthed sum of function values at grid points in the neighbourhood (the
stencil) of the grid point.
As an example consider a stencil containing the grid point (fi ) and it’s two
nearest neighbors (fi−1 and fi+1) with ∆x = xi+1 − xi = xi − xi−1.

df

dx

∣∣∣∣
xi

≈ 1

∆x

j=1∑
j=−1

aj fi+j . (38)
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Finite differencing (continued)

The coefficients aj can be found be expanding f in a Taylor series around
xi for the grid points in the stencil

f (xi−1) = f (xi )−
df

dx

∣∣∣∣
xi

∆x +
1

2

d2f

dx2

∣∣∣∣
xi

∆x2 + O((∆x)3)

f (xi ) = f (xi )

f (xi+1) = f (xi ) +
df

dx

∣∣∣∣
xi

∆x +
1

2

d2f

dx2

∣∣∣∣
xi

∆x2 + O((∆x)3)

Requiring that the weighted sum approximates the derivative yields the
following equations for a−1, a0 and a1

0 = a−1 + a0 + a1

1 = −a−1 + a1

0 = a−1 + a1

with the solution a−1 = −1/2, a0 = 0, a1 = 1/2.
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Finite differencing (continued)

Thus we find that

df

dx

∣∣∣∣
xi

=
fi+1 − fi−1

2∆x
+ O((∆x)2). (39)

Similarly we find for the second derivative that

d2f

dx2

∣∣∣∣
xi

=
fi+1 − 2fi + fi−1

(∆x)2
+ O((∆x)2). (40)

These finite difference operators are second order accurate.
Higher order accuracy or higher order derivatives require larger stencils.
Another way of looking at finite differencing operators is through
interpolating polynomials.
Either approach gives the same coefficients for the same stencil.
It is also clear from either approach that the error estimates are only
correct if f is smooth enough.
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The method of lines

Consider the set of hyperbolic PDE’s

∂tq + Ai (q)∂iB(q) = S(q). (41)

The idea then is to discretize in space first, i.e. write the equations as

∂tq = L(q), (42)

where L(q) is a discrete approximation to the equations (e.g. using finite
differencing).
This then turns the equations into a set of coupled ODE’s with respect to
time.
If the spatial discretization (including boundary conditions) is stable we we
can then evolve the system of equations using any stable ODE time
integrator.
Often Runge-Kutta integration schemes are the scheme of choice.
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The method of lines (continued)

Advantages of using the method of lines:

It is easy to change the time integration scheme (e.g. going to higher
order).

It is easy to couple different evolution equations maintaining high
order coupling.

The method of lines is implemented in Cactus in the thorn
CactusNumerical/MoL.To use:

Schedule a routine to register the evolution variables and RHS
variables with MoL.

Schedule routines to set the RHS variables.

Set parameters when launching job to choose the time integration
scheme.
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McLachlan

McLachlan is the Einstein Toolkit implementation of BSSN.
McLachlan is named in honor of the Canadian Singer/Song writer Sarah
McLachlan.
It is based on finite differencing and the method of lines.
It supports high order finite differencing (8th order).
Since it is generated from the tensor equations by Kranc it is easy to
maintain and modify.
It is highly optimized (supports vectorization and OpenMP) and an effort
is ongoing to make it be able to run on GPU’s as well.
In the future it may be necessary to generate different versions optimized
for specific computer architectures.
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GRMHD - Valencia Formulation

Once we have established the spacetime evolution and initial data
equations, we need to obtain the evolution equations for the matter fields
and the magnetic field evolution equation in ideal MHD case.
These equations can be expressed as the local conservation laws of baryon
number and energy momentum. For baryon number we have:

∇νJν = 0, (43)

where Jµ = ρuµ is the rest-mass current, ρ the rest-mass density and uµ is
the four-velocity of a fluid comoving observer.
The conservation of energy-momentum is given by:

∇νTµν = 0, (44)

where Tµν for a perfect fluid is given by:

Tµν
Fluid = ρhuµuν + pgµν , (45)

where gµν is the metric, p is the pressure, and h is the specific enthalpy,
defined by h = 1 + ε+ p/ρ, ε being the specific internal energy.
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GRMHD - Valencia Formulation

In the case of a magnetized fluid in the ideal MHD approximation, the
stress-energy-momentum tensor can be written as:

Tµν = ρh∗uµuν + p∗gµν − bµbν , (46)

where we define p∗ = p + b2/2, h∗ = h + b2/ρ, ε∗ = ε+ b2/(2ρ), that
results into h∗ = 1 + ε∗ + p∗/ρ.
Note that in the expression above we have used the magnetic field bµ as
measured by the comoving observer. It can expressed in terms of the
magnetic field measured by the Eulerian observer, B i as:

b0 =
WB ivi
α

(47)

bi =
B i + αb0ui

W
. (48)

Finally, the modulus of the magnetic field can be written as

b2 =
B2 + α2(b0)2

W 2
, (49)

where B2 = B iBi .
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GRMHD - Valencia Formulation

If we define the rest-mass density, the momentum density of the
magnetized fluid in the j-direction, and its total energy density as
measured by an Eulerian observer as

D ≡ −Jνnν = ρW (50)

Sj ≡ −T(n, e(j)) = ρh∗W 2vj − αb0bj (51)

τ ≡ T(n,n) = ρh∗W 2 − p∗ − α2(b0)2 − D (52)

The GRMHD equations can be cast in conservative form:

1√
−g

(
∂
√
γF0

∂x0
+
∂
√
−gFi

∂x i

)
= S, (53)

where F0 is the state vector:

F0 =


D
Sj
τ
Bk

 , (54)
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GRMHD - Valencia Formulation

while Fi are the fluxes

Fi =


Dṽ i

Sj ṽ
i + p∗δij − bjB

i/W

τ ṽ i + p∗v i − αb0B i/W
ṽ iBk − ṽkB i

 (55)

with the corresponding sources S are given by

S =


0

Tµν
(
∂gνj
∂xµ − Γδνµgδj

)
α
(
Tµ0 ∂lnα

∂xµ − TµνΓ0
νµ

)
0k

 , (56)

where ṽ i = v i − βi

α .
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Conservation Laws

The simplest one dimensional conservation law (a class of hyperbolic
equations):

qt(x , t) + f (q(x , t))x = ψ(q(x , t)), (57)

where q(x , t) is a vector of conserved quantities (densities), f (q(x , t)) is
known as the flux function, while ψ(q(x , t)) are the source terms (they
work as a sink or fountain).

Solutions of conservation laws may contain discontinuities such as shock
waves.
Finite difference methods are expected to break down near discontinuities
where the differential equation does not hold.
Integral form of Eq. 57 leads to finite volume methods.
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Finite Volume Methods

Rather than pointwise approximations at grid points, we break the domain
into grid cells and approximate the total integral of q over each grid cell
(or the cell average of q).

These values are modified in each time step by the fluxes through the
edges of the cell.
The primary problem is to calculate the numerical flux functions that
approximate reasonably well the correct fluxes, based on the data
available: the approximate cell average.
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Finite Volume Methods

Let the ith cell be Ci = (xi−1/2, xi+1/2).

The average value over the ith interval at time tn is:

Qn
i ≈

1

∆x

∫ xi+1/2

xi−1/2

q(x , tn)dx ≡ 1

∆x

∫
Ci
q(x , tn)dx , (58)

where ∆x = xi+1/2 − xi−1/2 is the cell’s length.
The integral form of the conservation law gives:

d

dt

∫
Ci
q(x , t)dx = f (q(xi−1/2, t))− f (q(xi+1/2, t)) +

∫ ∫
Ci
ψ(q(x , t))dxdt

(59)
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Finite Volume Methods

Integrating Eq.59 in time from tn to tn+1 and dividing by the grid cell
interval ∆x yields an explicit time-marching algorithm:

Qn+1
i = Qn

i −
∆t

∆x
(F n

i+1/2 − F n
i−1/2) + Ψn

i , (60)

where F n
i−1/2 is some approximation to the average flux along x = xi−1/2:

F n
i−1/2 ≈

1

∆t

∫ tn+1

tn

f (q(xi−1/2, t))dt, (61)

and Ψn
i is the spacetime average of the sources:

Ψn
i ≈

1

∆x∆t

∫ tn+1

tn

∫
Ci
ψ(q(xi , t))dxdt. (62)
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Finite Volume Methods
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Riemann Problem

How do we calculate the numerical fluxes at the cell interfaces?

By solving a colection of local Rieamann problems!
This method of approximating the continous solution by a colection of
local Riemann problems is also called Godunov’s method.
The Riemann problem consists of a conservation law equation with a
piecewise constant data, with only a single jump discontinuity at some
point (x = 0 for example):

q(x , 0) =

{
ql if x < 0
qr if x > 0

By solving it with ql = Qi−1 and qr = Qi , we can obtain information that
can be used to calculate the numerical flux and update the cell averages
over a time step.
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Riemann Problem
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Example: Burgers Equation

ut + f (u)x = 0, f (u) =
1

2
u2 (63)

with

u(x , 0) =

{
ul if x < 0
ur if x > 0
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Approximate Riemann Solvers

Usually the exact solution of the Riemann problem is computationally very
expensive.

Fortunately we can obtain very good approximation for the solutions by
approximating the conservation law as a quasi-linear system:

qt + Aqx = 0 (64)

where A is a diagonalizable matrix given by:

A(ql , qr ) =
∂f

∂q

∣∣∣∣
q=1/2(ql+qR)

(65)

Roe solver:

FRoe
i+1/2 =

1

2

[
f (qri+1/2) + f (qli−1/2)−

∑
α

|λα|ωαrα

]
(66)

where λα are the characteristics speeds, ωα the jumps in the
characteristics and rα the right eigenvector of A.
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Slope Limiters

How do we calculate the left and right states?

For example if we want to construct a piecewise linear data instead of a
piecewise constant data, we can use a slope limiting process:

qli+1/2 = qi + σi (xi+1/2 − xi ) (67)

qri+1/2 = qi+1 + σi+1(xi+1/2 − xi+1) (68)

where σi = minmod(si−1/2, si+1/2) and the slopes:

si+1/2 =
qi+1 − qi
xi+1 − xi

(69)
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Algorithm Overview

Set boundary conditions or ghost zone values

Calculate numerical flux at every cell interface by solving an
approximate Riemann problem

Reconstruct the primitive variables pl and pr at the cell interfaces (by
using slope limiters for example).
Find the conservative variables ql and qr by using their definition
Calculate the fluxes f (ql) and f (qr )
Calculate A, rα, λα and use them to find ωα
Calculate the Roe formula for the numerical flux: FRoe

i+1/2

Evaluate the sources Ψ(q).

Update the average quantities Qn
i using method of lines.
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Shocktube Test

Figure: Diagonal shock along xy-plane: final ρ profile.
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