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I’ll use Antón et al. (2006) and Penner (2011).

We start with the modified form of Maxwell’s equations in covariant form with the divergence
cleaning field, ψ:

∇µ ( ∗Fµν + gµνψ) = κnνψ (1)

which comes from Penner (2011) except we correct the sign of the RHS. Also, note that when κ > 0,
∇µ∇µψ = κ∇µn

µψ is a damped wave equation. We will thus use κ > 0 as ∂tψ is proportional to
the divergence of the magnetic field which we wish to drive to zero. We can simplify the original
part of Maxwell’s equations:
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where the connection term vanished because ∗Fµλ is anti-symmetric while Γν
µλ is symmetric under

permutation of its lower indices.

Using equation (18) from Antón et al. (2006),

∗Fµν =
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where Bµ is a purely spatial vector and is the magnetic field w.r.t. the hypersurfaces normal
observer, i.e. the one we want. Therefore, Maxwell’s equations become (remembering that Bt = 0
and ∗F tt = 0):
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which is equation (20) from Antón et al. (2006) divided by α. Note we have used the following
identity in arriving at the last expression:

ui

ut
= αvi − βi (10)



– 2 –

The divergence constraint comes from the time component of the Maxwell’s equation:
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In 3+1 form, the metric’s inverse is defined as
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and
nµ = [−α, 0, 0, 0] , nµ =
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, (16)

To simplify/expand the divergence cleaning term in Eq. 1, we may take out the metric from
its covariant derivative:

∇µg
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The t-component is
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which leads to the ultimate equation:
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The j-component is
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The complete jth-component of the modified Maxwell’s equation becomes
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Inserting equation 21 :
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Multiplying through by
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γ:

∂t
√
γBj + ∂i

√
γ

(
uiBj − ujBi

)
−
√
γβj

α
∂i

(
αBi − ψβi

)
+ α
√
γgij∂iψ (27)

=
√
γβj

α

{
ψ∂iβ

i −√γBi∂i

(
α
√
γ

)}
(28)

Grouping spatial derivatives:

∂t
√
γBj + ∂i

√
γ

(
uiBj − ujBi

)
+
√
γβj

α

[
√
γBi∂i

(
α
√
γ

)
− ∂i(αBi)

]
+

α
√
γ

(
gij∂iψ +

βj

α2
[∂i(ψβi)− ψ∂iβ

i]
)

= 0 (29)

Simplifying the terms:
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which reduces to:
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or in conservative form:
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